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Preface

“Bien des choses ne sont impossibles que parce qu’on s’est accoutumé à les regarder comme
telles.”

Charles Pinot Duclos (1751)

This volume was grown from lectures given at the atelier “Modern applications
of conformal invariance/Applications modernes de l’invariance conforme” held in
Nancy in march 2011. The enormous progress made possible by the systematic
utilisation of methods of conformal field-theory for the precise understanding of
critical phenomena, at least in two spatial dimensions, has been understood since
almost three decades. Still, much of the impressive success of conformal invariance
is related to local observables, their exponents and their correlators. Much recent
work has been devoted to attempts to understand better the behaviour of extended
objects, such as interfaces. This volume proposes an informal introduction to current
results, methods and open questions, which we hope to be accessible to graduate
students and researchers from other fields. Familiarity of the reader with the basic
techniques in equilibrium statistical mechanics and critical phenomena is assumed.

In order to make this volume as self-contained as possible, we begin in Chap. 1
with a short and compact introduction to the main concepts and methods of 2D

conformal invariance. We shall describe therein the main properties of local ob-
jects, such as primary scaling operators, the energy-momentum tensor, the Virasoro
algebra, discuss unitary minimal models and how the partition function can be de-
composed into minimal characters, both for bulk critical systems and for critical
phenomena near a surface. Besides frequent references to spin systems known from
statistical physics, such as the Ising and Potts models, we shall use the conformal
field-theory of the free boson as the main paradigmatic example. Besides giving in
this way a brief review of the textbook knowledge of those elements of conformal
invariance which will be needed in the later chapters, we also introduce the nota-
tion to be used throughout this volume. Chapter 2, written by M. Bauer, gives an
introduction to the physical and mathematical techniques required to describe an
important class of growth models whose behaviour can be studied in great depth—
conformally invariant interfaces governed by Stochastic Loewner Evolution (SLE).
It turned out that the methods required for the study of SLE are quite distinct from
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viii Preface

those developed previously for the analysis of local observables within conformal
field-theory, but they provide a very different and new point of view for the analysis
of the behaviour of extended objects, and continue to fascinate physicists and math-
ematicians alike. Two of the most important properties of SLE, namely conformal
invariance and the Domain Markov Property, are carefully explained and the chapter
closes with a detailed discussion of the SLE-CFT correspondence. In carrying out
this mathematically oriented analysis, a couple of technical assumptions had to be
made. Although these may appear to be plausible, it is essential to verify whether
these assumptions are actually realised in physically relevant systems. Chapter 3,
written by C. Chatelain, presents a review of numerical tests of the basics of the
SLE description of interfaces in critical systems. First discussing the most simple
spin systems in the Ising and Potts universality classes, the second part of this review
explores new ground in investigating to what extent SLE might become applicable
in situations where quenched disorder becomes relevant. Finally Chap. 4, written by
J.L. Jacobsen, addresses the study of two-dimensional loop models and their bulk
and surface critical behaviour, analysed with the help of conformal invariance. After
a detailed survey of the required graph-theoretical tools, it is shown how to relate
the specific examples of the Potts- and O(n)-vector models in terms of clusters and
oriented loops. In this way the defining model parameters, namely the number of
states, can be analytically continued to arbitrary values. These analytic continua-
tions are essential for application of the results to percolation and polymers. Since
oriented loops act as level lines of height models, a treatment of these height mod-
els, via a geometric Coulomb gas construction, yields the bulk and surface critical
exponents. From the underlying Temperley-Lieb algebra, the correct partition func-
tion in the continuum-limit can be found, which in turn is needed for the derivation
for crossing formulæ in percolation. Novel extensions of the algebraic machinery
of the Temperley-Lieb algebra appropriate for boundary conformal field-theory are
explained.

Nous remercions chaleureusement les auteurs pour leur grand effort et leur temps
devoué à l’écriture de ce volume. MH thanks the organisers of the Programme ‘Ad-
vanced Conformal Field Theory and Applications’ at the Institut Henri Poincaré in
Paris for warm hospitality, where the editing was finished. It is a pleasure to thank
Springer Verlag and especially C. Caron for having made the writing/editing process
as agréable as possible.

La science vivante étant dans un processus de renouvellement permanent et
fructueux, nous espérons évidemment que les générations futures exploreront les
cieux qui pour nous seront restés des mundi incogniti. Nous dédions ce volume à
nos enfants: à Klara, et à Léna, Ulysse, Ana-Fleur et Alexandre Bonaventure.

Malte Henkel
Dragi Karevski

Nancy, France
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Notations1
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T (z), T (z̄) complex energy-momentum tensor
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1Some notations commonly used in this book are listed in this section.



Chapter 1
A Short Introduction to Conformal Invariance

Malte Henkel and Dragi Karevski

1.1 From Scale-Invariance to Conformal Invariance

Conformal invariance arises as an extension of scale-invariance, which is physically
realised at a critical point, of a many-body system at thermal equilibrium. In order
to permit readers to arrive as rapidly as possible at the main themes of this book, we
begin with a heuristic guide, leading from critical phenomena to conformal symme-
tries. For illustrative purposes, the reader might refer to the celebrated Ising model,
which can be defined in terms of ‘spin variables’ σi = ±1 attached to the sites i of
a hyper-cubic lattice Λ ⊂ Z

d , with |Λ| sites. To each configuration of spins {σ } one
associates the energy

H
[{σ }]= −J

∑

(i,j)

σiσj − h
∑

i

σi. (1.1)

Here, the first sum only extends over pairs of nearest neighbours on the lattice Λ,
J > 0 denotes the exchange coupling and h an external magnetic field. Convention-
ally, one considers the system being coupled to an external heat bath1 of temper-
ature T and in principle, one should now try to compute the partition function
Z = Z(T ,h) := ∑

{σ } e−H [{σ }]/T . If this can be done, the density of the Gibbs
potential is given by g(T ,h) = −|Λ|−1T lnZ(T ,h) from which the full thermody-
namics can be derived. The study of phase transitions then involves the analysis of
possible non-analytic behaviour of g and its derivatives as a function of T or h, in
the limit |Λ| → ∞.

1Unless explicitly stated otherwise, we shall choose units such that the Boltzmann constant kB = 1.

M. Henkel (�) · D. Karevski
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2 M. Henkel and D. Karevski

We shall not follow this route, but shall rather illustrate now how phase transi-
tions and critical phenomena can be analysed in terms of correlation functions. Us-
ing the Ising model for illustration and going over to a continuum limit, one defines
the space-dependent densities σ(r) and ε(r) of the magnetisation and the energy.
Then consider the two-point functions

Gσ (r1 − r2) = 〈
σ(r1)σ (r2)

〉− 〈
σ(r1)

〉〈
σ(r2)

〉

Gε(r1 − r2) = 〈
ε(r1)ε(r2)

〉− 〈
ε(r1)

〉〈
ε(r2)

〉 (1.2)

where 〈.〉 denotes the thermodynamic average. From now on, we use the reduced
variables τ := (Tc − T )/T and h and implicitly assume that the model has a critical
point at some T = Tc �= 0 and h = 0. The hypothesis of scale-invariance asserts
that under a length rescaling, with a constant rescaling factor b (which generates the
dilatation r �→ r′ = r/b), the correlators Gσ and Gε are generalised homogeneous
functions

Gσ (r; τ,h) = b−2xσ Gσ

(
r/b; τbyτ , hbyh

)

Gε(r; τ,h) = b−2xεGε

(
r/b; τbyτ , hbyh

)
.

(1.3)

Here xσ and xε are the scaling dimensions of σ and ε while yτ , yh are usually
called renormalisation-group eigenvalues. These numbers are universal in the
sense that they are independent of many details of the models under study (such as
the kind of lattice used, or the precise range of the interactions). Their values can
be used to characterise the universality class of a certain phase transition, which
almost always only depends2 on the space dimension d and the global symmetry of
the interaction hamiltonian H [{σ }]. The densities σ(r) and ε(r) are called scaling
operators, while their conjugates h and τ are called scaling fields.

The scaling behaviour (1.3) permits to recover the scaling of the thermody-
namic observables. Recall that the magnetic susceptibility per spin χ = χ(τ,h) 

−∂2g/∂h2 and the specific heat C = C(τ,h) 
 −∂2g/∂τ 2 are simply related to g,
close to criticality. Furthermore, they can also be found from the static fluctuation-
dissipation theorems

χ 
 1

T

∫
ddrGσ (r), C 
 1

T 2

∫
ddrGε(r). (1.4)

Integrating, one readily finds the scaling of the Gibbs potential

g(τ,h) = b−dg
(
τbyτ , hbyh

)
, (1.5)

where we also used xε + yτ = xσ + yh = d . This last relation is equivalent to hy-
perscaling. The relationship with the conventional critical exponents α,β, ν can be
read off from

xσ = d − yh = β

ν
, xε = d − yτ = 1 − α

ν
. (1.6)

2For example, in the 2D Ising universality class, one has xσ = 1/8 and xε = 1/2.



1 A Short Introduction to Conformal Invariance 3

Fig. 1.1 A conformal
transformation (right panel)
of a rectangular lattice (left
panel)

It is left as an easy exercise to re-derive from this the complete critical behaviour
of the specific heat C(τ,0) ∼ |τ |−α , magnetisation m(τ,0) ∼ τβ , m(0, h) ∼ h1/δ ,
susceptibility χ(τ,0) ∼ |τ |−γ , correlation length ξ ∼ −|r|/ lnGσ (r; τ,0) ∼ |τ |−ν ,
correlator G(r;0,0) ∼ |r|−(d−2+η) and so on. Especially, many exponent scaling
relations, such as α + 2β + γ = 2 or α = 2 − νd , are obtained. Equation (1.5)
implies that only two of these critical exponents are independent.

Scaling operators are cast into three distinct categories: if x < d (or y =
d − x > 0), the scaling operator is called relevant, since under repeated scale-
transformation, the scaling argument byδ → ∞. Relevant scaling operators essen-
tially determine the scaling behaviour. If x > d (or y < 0), the scaling operator is
called irrelevant, since the argument byδ → 0 and the corresponding quantity will
not influence the (leading) scaling behaviour. Finally, if x = d (or y = 0), the scaling
operator is called marginal. The scaling form (1.5) of the Gibbs potential states that
the only two relevant scaling operators are the magnetisation density and the energy
density. This simplifying assumption is indeed realised in many different, but not
all, systems.

In order to see whether more rich scaling symmetries might be possible, we con-
sider generic scaling operators φa(r), arrange for 〈φa(r)〉 = 0 and study the correla-
tors Gab(ra, rb) = 〈φa(ra)φb(rb)〉. We expect that the transformation properties of
the Gab follow from those of the scaling operators φa . If we admit space-dependent
rescaling factors b = b(r), a natural generalisation of global scale-invariance (1.3)
is

φ(r) �→ φ′(r) = J (r)x/dφ
(
r/b(r)

)
, (1.7)

where J (r) is the Jacobian of the transformation r �→ r′ = r/b(r) and x the scaling
dimension of φ. If one restricts to those coordinate transformations which conserve
angles, one arrives at conformal transformations (see Fig. 1.1).

In this book, we shall only be interested in two-dimensional (2D) conformal
transformations. Since the 1980s, starting from the work of Belavin, Polyakov and
Zamolodchikov and of Cardy, the extreme usefulness of conformal invariance in
understanding 2D critical phenomena has been realised. In this chapter, we shall try
to compactly introduce the main points and to explain them in a simple way.

In 2D, it is useful to work with complex coordinates (or light-cone coordinates)

z = r1 + ir2, z̄ = r1 − ir2 (1.8)
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instead of two-dimensional vectors r = (r1, r2). Recall that any analytic (or
anti-analytic) coordinate transformation z �→ w(z) or z̄ �→ w̄(z̄ ) is conformal.
For technical reasons, we prefer to work with an infinitesimal form and write
w(z) = z + ε(z), with ε(z) = −εzn+1. From (1.7), one then obtains the infinites-
imal transformations δφ = ε�nφ and δ̄φ = ε̄�̄nφ, with n ∈ Z. Explicitly, they
read

�n = −zn+1∂z − Δ(n + 1)zn, �̄n = −z̄n+1∂z̄ − Δ(n + 1)z̄ n. (1.9)

Here the non-derivative terms express the transformation of the scaling operator
φ = φ(z, z̄ ) and the terms containing derivatives describe the changes in the co-
ordinates z and z̄. The real numbers Δ and Δ are called conformal weights of
the scaling operator φ. They are related to the scaling dimension x and spin s as
follows3

x = Δ + Δ, s = Δ − Δ. (1.10)

The generators (1.9) satisfy the following commutation relations

[�n, �m] = (n − m)�m+n

[�̄n, �̄m] = (n − m)�̄m+n (1.11)

[�n, �̄m] = 0.

This algebra is also called the loop algebra (or centre-less Virasoro algebra)4 and
decomposes into the direct sum of two commuting Lie algebras, one generated by
the set 〈�n〉n∈Z and the other by 〈�̄n〉n∈Z. Because of this simple structure, it is often
enough to consider merely the z-dependence of correlators.

Exercise 1 Verify that the two-dimensional Laplace operator ∇2 = ∂2
r1

+ ∂2
r2

=
4 ∂

∂z
∂
∂z̄

satisfies

[∇2, �n

]= −(n + 1)zn∇2 − 4Δ(n + 1)nzn−1 ∂

∂z̄
.

Show that the 2D Laplace equation ∇2φ(z, z̄) = 0 is conformally invariant, if the
conformal weights Δ = Δ = 0.

The Lie algebra (1.11) is infinite-dimensional. Its maximal finite-dimensional
sub-algebra consists of the projective conformal transformations and is given
by sl(2,R) ⊕ sl(2,R) = 〈�n〉n=±1,0 ⊕ 〈�̄n〉n=±1,0. This subset of conformal trans-
formations is the only one which has analogues in d > 2 dimensions and which

3In the literature, the alternative notation: h, h̄ for the conformal weights and Δ = h + h̄ for the
scaling dimension, is also met with frequently.
4Although this algebra was first defined by É. Cartan in 1909, it is unfortunately often referred to as
‘Witt algebra’. Witt studied this algebra only much later (in the 1930s), over fields of characteristic
p > 0, when the algebra is spanned by the �n with −1 ≤ n ≤ p − 2.
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map the entire complex plane C (including the point at infinity) onto itself. Ex-
plicitly, these are translations, generated by �1, �̄−1, dilatations �0 + �̄0, rotations
i(�0 − �̄0) and special conformal transformations �1, �̄1. One calls quasi-primary
those scaling operators φ which transform co-variantly, that is according to (1.9),
under sl(2,R) ⊕ sl(2,R). Correlators built exclusively from quasi-primary scaling
operators φa = φa(za, z̄a) satisfy the projective Ward identities

n∑

i=1

∂

∂zi

〈φ1 . . . φn〉 = 0,

n∑

i=1

(
zi

∂

∂zi

+ Δi

)
〈φ1 . . . φn〉 = 0,

n∑

i=1

(
z2
i

∂

∂zi

+ 2Δizi

)
〈φ1 . . . φn〉 = 0.

(1.12)

A similar set of equations holds for the dependence on the variables z̄i . The projec-
tive Ward identities express the vanishing of the n-particle extensions of the gener-
ators �±1,0 from (1.9) on the co-variant n-point correlators 〈φ1 . . . φn〉.

We illustrate how the conditions (1.12) determine the form of the conformally
covariant two-point function Φ(z1, z2; z̄1, z̄2) := 〈φ1(z1, z̄1)φ2(z2, z̄2)〉. It is enough
to study the dependence on z1 and z2 explicitly. From translation invariance, it is
clear that Φ = Φ(z) with z = z1 − z2. Next, scale-invariance implies

�0Φ(z) = (−z∂z − Δ1 − Δ2)Φ(z) = 0 (1.13)

with the solution Φ(z) = Φ0z
−Δ1−Δ2 . Finally, invariance under the special transfor-

mation gives

�1Φ(z) = (−(z2
1 − z2

2

)
∂z − 2Δ1z1 − 2Δ2z2

)
Φ(z)

= (−z2∂z − 2Δ1z
)
Φ(z) + 2z2 (−z∂z − Δ1 − Δ2)Φ(z)

︸ ︷︷ ︸
=0

= 0, (1.14)

where we used the decomposition z2
1 − z2

2 = (z1 − z2)
2 +2z2(z1 − z2). The last term

in the second line of (1.14) vanishes because of dilatation-invariance (1.13). Next,
multiply (1.13) by z and subtract it from (1.14). This leads to

(Δ1 − Δ2)zΦ(z) = 0. (1.15)

Therefore, the conformal weights of the two scaling operators have to be equal.
Combining these results and restoring the conjugate part as well, the two-point func-
tion of quasi-primary scaling operators φa,b must be

〈
φa(za, z̄a)φb(zb, z̄b)

〉= δΔa,Δb
δΔa,Δb

φab(za − zb)
−2Δa (z̄a − z̄b)

−2Δa , (1.16)

where φab is an arbitrary normalisation constant. The constraint on the conformal
weights goes beyond what is found from scale-invariance alone.

Exercise 2 Derive the conformally invariant three-point function of quasi-primary
scaling operators5 (with zab := za − zb)

5With the normalisation φab = δab in (1.16), the coefficient C123 is universal and not arbitrary.
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Fig. 1.2 Conformal transformation w = w(z) = L
2π

ln z from the infinite complex plane C to the
infinitely long strip of finite width L and periodic boundary conditions, indicated by the seam

〈φ1φ2φ3〉 = C123z
−(Δ1+Δ2−Δ3)
12 z

−(Δ2+Δ3−Δ1)
23 z

−(Δ1+Δ3−Δ2)
13

× z̄
−(Δ1+Δ2−Δ3)
12 z̄

−(Δ2+Δ3−Δ1)
23 z̄

−(Δ1+Δ3−Δ2)
13 . (1.17)

The form of higher correlators cannot be fully determined from the projective Ward
identities.

It is a special feature of 2D conformal invariance that it can relate correla-
tors in different geometries. This goes beyond the finite-dimensional sub-algebra
considered so far. It becomes necessary to sharpen the terminology introduced so
far, by defining a primary scaling operator φ, with conformal weights Δ,Δ, by
the transformation law, under the conformal transformation z �→ w = w(z) and
z̄ �→ w̄ = w̄(z̄)

φ(z, z̄ ) =
(

dw(z)

dz

)Δ(dw̄(z̄)

dz̄

)Δ

φ(w, w̄). (1.18)

The most commonly met example is given by the logarithmic conformal transfor-
mation

w = L

2π
ln z (1.19)

which maps the infinite complex z-plane onto an infinitely long strip of finite
width L, with periodic boundary conditions. In Fig. 1.2, this strip becomes the
surface of the infinitely long cylinder of circumference L and the thick line indi-
cates the seam. A two-point function built from a primary scaling operator φ then
transforms as
〈
φ(z1, z̄1)φ(z2, z̄2)

〉
z

=
(

dw

dz
(z1)

dw

dz
(z2)

)Δ(dw̄

dz̄
(z̄1)

dw̄

dz̄
(z̄2)

)Δ〈
φ(w1, w̄1)φ(w2, w̄2)

〉
w
. (1.20)

Using the explicit form (1.16) of the two-point function in the z-plane, one obtains
for the transformation (1.19), with z = exp(2πL−1w) = exp(2πL−1(u + iv))
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〈
φ(w1, w̄1)φ(w2, w̄2)

〉
w

=
(

2π

L

)2Δ+2Δ(z
1/2
1 z

1/2
2

z1 − z2

)2Δ( z̄
1/2
1 z̄

1/2
2

z̄1 − z̄2

)2Δ

=
(

2π

L

exp[π
L
(w1 + w2)]

exp( 2π
L

w1) − exp( 2π
L

w2)

)2Δ

·
(

2π

L

exp[π
L
(w̄1 + w̄2)]

exp( 2π
L

w̄1) − exp( 2π
L

w̄2)

)2Δ

=
(

π

L

1

sinh[π
L
(w1 − w2)]

)2Δ

·
(

π

L

1

sinh[π
L
(w̄1 − w̄2)]

)2Δ

, (1.21)

where w1 −w2 = (u1 −u2)+ i(v1 −v2). Evidently, in the limit |w1 −w2| � L, one
simply recovers the two-point function (1.16) in the complex plane C. On the other
hand, and taking v1 = v2, the opposite limit |u1 − u2| � L gives the asymptotic
exponential decay

〈
φ(u1,0),φ(u2,0)

〉
strip 


(
2π

L

)2x

exp

[
−2π

L
(Δ + Δ)(u1 − u2)

]
, (1.22)

which is the usual way to define a correlation length ξ , via 〈φ(u,0)φ(0,0)〉 ∼
exp(−u/ξ). Because of x = Δ + Δ, one reads off

ξ = L/(2πx). (1.23)

Therefore, conformal invariance has produced a prediction for the finite-size scaling
of the correlation length in a finite geometry. Remarkably, it relates the finite-size
scaling amplitude to an universal scaling dimension. The celebrated result Eq. (1.23)
is an often-used practical way to measure scaling dimensions in specific models.

Exercise 3 If φ is a quasi-primary scaling operator, how does its derivative ∂zφ

transform?

1.2 The Energy-Momentum Tensor

More information on conformal field-theories comes from an analysis of the trans-
formations of averages. Following well-known procedures, such as the Hubbard-
Stratanovich transformation, one may associate to a classical spin system, such as
the Ising model (defined on a discrete lattice Λ) and described by a classical hamil-
tonian H [{σ }], a continuum field-theory, which in turn is characterised by an action
S[φ]. Then, for an observable A

〈A 〉 = 1

Z

∑

{σ }
A
[{σ }] e−H [{σ }]/T = 1

Z

∫
DφA [φ] e−S[φ], (1.24)

where Z = ∑
{σ } e−H [{σ }]/T = ∫

Dφ e−S[φ] is the partition function and Dφ =∏
r
∫

dφ(r) serves here a shorthand for the functional integration over the values
of the continuum field at all space points and which formally replaces the sum over
all spin configurations in the lattice model.
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The specific form of the action is in general quite complicated. However, it is
usually admitted that the Ising universality class can be described in terms of a

scalar φ4-theory, with S = ∫
ddrL and L = 1

2 (∇φ)2 + m2

2 φ2 + g
4 φ4. At the level

of mean-field theory, g is a constant and m2 ∼ T − Tc.
Now, consider how this transforms under a coordinate transformation r �→ r′ :=

r + ε(r). A critical system, where the control parameters τ = h = 0, should be at
a renormalisation group fixed point and be described by a fixed point action S∗[φ].
A generic coordinate transformation will in general not be conformal, hence it will
contain shear components which will drive the system away from its critical point,
such that the action transforms S∗[φ] → S∗[φ] + δS[φ]. For an infinitesimal trans-
formation, one expects to first order, since the action is a scalar under rotations

δS = − 1

Id

∫
ddr ∂μεν(r)Tμν(r), (1.25)

where μ,ν = 1, . . . , d , Einstein’s summation convention is used, Id is a constant
(I2 = 2π ) and Tμν is the energy-momentum tensor. Besides the obviously as-
sumed spatial translation-invariance, we shall not enter into a detailed discussion on
the validity of Eq. (1.25), and shall rather regard it as a postulate which selects the
kind of ‘local’ field-theories we wish to study.6 This implies the conformal Ward
identity for the n-point functions of quasi-primary scaling operators

n∑

p=1

〈
φ1(r1) . . .

(
ε(rp) · ∇ + xp

d
∇ · ε(rp)

)
φp(rp) . . . φn(rn)

〉

+ 1

Id

∫
dr
〈
φ1(r1) . . . φn(rn)Tμν(r)

〉
∂μεν(r) = 0. (1.26)

This is the fundamental equation for conformal field-theories. For projective con-
formal transformations, the second line is absent and one is back to (1.12).

Proof In view of the importance of (1.26), we outline a proof. Recalling (1.7), av-
erages transform as

〈
φ′

1(r1) . . . φ′
n(rn)

〉
S∗ = J (r1)

x1/d . . . J (rn)
xn/d

〈
φ1
(
r′

1

)
. . . φ′

n

(
r′
n

)〉
S∗+δS

.

To leading order, one has

〈A 〉S∗+δS 
 1

Z

∫
DφA [φ](1 − δS[φ]) e−S∗[φ] = 〈

A (1 − δS)
〉
S∗ , (1.27)

whereas the coordinate change simply amounts to a change of variables in Z. From
the Jacobian, one has the explicit transformation

δφ(r) =
(

x

d
∇ · ε(r) + ε(r) · ∇

)
φ(r) (1.28)

6Equation (1.25) borrows from the theory of elasticity, where Tμν is called ‘stress-energy tensor’.
This analogy is unlikely to be valid for theories with long-range interactions.
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of a quasi-primary scaling operator φ. If one requires conformal invariance, one
expects

n∑

p=1

〈
φ1(r1) . . . δtotalφp(rp) . . . φn(rn)

〉= 0

where δtotalφ is the total change in φ, either explicitly via (1.28) or through a change
of the measure via (1.27). Combination gives the announced result. �

Several important properties of Tμν follow from the conformal Ward identity.

1. Conservation law ∂μTμν = 0, which follows from (1.26) by partial integration.
2. Spatial translation-invariance has been admitted from the beginning.
3. Invariance under rotations, with εμ(r) = εμνrν and εμν = −ενμ, implies a sym-

metric tensor, Tμν = Tνμ.
4. Dilatation-invariance, with εμ(r) = λrμ and λ a constant, implies tracelessness,

T
μ
μ = 0.

These conclusions are obtained through partial integrations, and discarding any
boundary terms. If that procedure is legitimate, such that Tμν is symmetric and
traceless, conformal invariance would follows. Schematically,

translation-invariance
rotation-invariance
scale (dilatation)-invariance
conformal Ward identity

⎫
⎪⎪⎬

⎪⎪⎭
�⇒ conformal invariance. (1.29)

To see this formally, consider an infinitesimal special conformal transformation,
with εμ(r) = ημr2 − 2rμη · r and where η is some constant infinitesimal vector.
Hence it follows that Tμν∂

μεν = 2Tμν(r
μην −ημrν)−2T

μ
μ η · r = 0, which implies

δS = 0.
We refer to the literature [2, 28, 37, 38] for careful discussions, including counter-

examples (!), on the subtle hidden assumptions required for the validity of these
conclusions. We point out that in 2D, this formal argument can be extended to the
full infinite-dimensional conformal algebra. If one of the conditions in (1.29) is not
met, full conformal invariance will not hold.

Exercise 4 In classical field-theories described by a lagrangian density L , the
classical equations of motion are ∂μ∂L /∂(∂μφ) − ∂L /∂φ = 0. In euclidean d-
dimensional space, one usually considers the ‘canonical energy-momentum tensor’

T̃μν := ∂L

∂(∂μφ)
∂νφ − δμνL .

Consider a free field with the lagrangian L = 1
2 (∂μφ)2. Using the classical equa-

tions of motion, show that it is not T̃μν , but rather the improved energy-momentum
tensor

Tμν = ∂μφ∂νφ − 1

2
δμν(∂λφ)2 + 1

4

d − 2

d − 1

(
δμν∇2 − ∂μ∂ν

)
φ2 (1.30)
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Fig. 1.3 Contour C which
encloses the n points
z1, . . . , zn, for the derivation
of the 2D conformal Ward
identity (1.32). The interior
domain D1 = intC is shaded

which satisfies all required properties of an energy-momentum tensor of a conformal
field-theory.

Considerably more can be said in 2D. Since Tμν is symmetric and traceless, it
has two independent components. In complex coordinates these may be taken to be

T := Tzz = 1

2
(T11 − iT12), T̄ := T̄z̄ z̄ = 1

2
(T11 + iT12). (1.31)

The conservation law then gives ∂z̄T = ∂zT̄ = 0, which are the Cauchy-Riemann
equations for T = T (z) being complex analytic in z and T̄ = T̄ (z̄) being anti-
analytic.

Returning to the conformal Ward identity, one must take Liouville’s theorem
into account, which states that a complex function w :C → C, analytic in the entire
complex plane C and which is bounded in C, that is there is a constant M < ∞
such that |w(z)| < M , must be a constant. Hence, an analytic function ε(z) with
|ε(z)| � 1 everywhere in C cannot exist. In order to rewrite the conformal Ward
identity (1.26) in complex coordinates, consider a contour C which encloses the
points z1, . . . , zn, see Fig. 1.3. In the interior domain D1 := intC, the function ε(z)

is both analytic and small, whereas in the exterior domain D2 = C − D1, ε(z) is
small, but not everywhere analytic. If the scaling operators φ1, . . . , φn are all pri-
mary, it can then be shown by the residue theorem that the Ward identity (1.26)
takes the form

1

2π i

∮

C

dz ε(z)
〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉

= 1

2π i

∮

C

dz ε(z)

n∑

p=1

(
Δp

(z − zp)2
+ 1

z − zp

∂

∂zp

)〈
φ1(z1, z̄1) . . . φn(zn, z̄n)

〉
.

(1.32)

The second line may also be interpreted as the change δε〈φ1 . . . φn〉 of the n-point
function under a conformal transformation.

Proof Equation (1.32) can be proven as follows. Denote the first term in (1.26) by
δε〈φ1 . . . φn〉. Then (c.c. denotes the complex conjugate)
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δε〈φ1 . . . φn〉
= −

∫

D2

dz̄ ∧ dz

2π i
∂z̄ε(z, z̄)

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉+ c.c.

=
∫

D2

dz̄ ∧ dz

2π i
ε(z, z̄)∂z̄

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉+ c.c.

=
∫

D1

dz̄ ∧ dz

2π i
ε(z)∂z̄

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉+ c.c.

=
∮

∂D1

dz

2π i
ε(z)

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉+ c.c.

=
n∑

j=1

∮

Cj

dz

2π i
ε(z)

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉+ c.c. (1.33)

where in the domain D2, ε(z, z̄) is not necessarily analytic, but infinitesimal small
so that the boundary term coming from the partial integration is negligible. Since all
the singularities of the integrand only occur at z = zj , the integration domain may be
shrunk to D1, where ε = ε(z) is analytic, i.e. ∂z̄ε = 0. Then the complex integration
over z̄ can be reduced to the boundary, such that only the contour integral over the
boundary C = ∂D1 remains. In the last step, this integral is separated into distinct
contour integrals over small circles Cj around each point zj . On the other hand, if
φ is primary, it transforms as

δεφ(z1, z̄1) = Δε′(z1)φ(z1, z̄1) + ε(z1)∂φ(z1)

= 1

2π i

∮

C1

dz ε(z)

(
Δ

(z − z1)2
φ(z1, z̄1) + 1

z − z1
∂z1φ(z1, z̄1)

)
. (1.34)

One sums over the contributions of all the φ1, . . . , φn and turns the sum of the con-
tour integrals

∮
Cj

into a single contour integral
∮
C

. Joining this with the relation
(1.33) gives the assertion. �

Since Eq. (1.32) holds true for an infinitely large ensemble of small functions
ε(z), one can go over from this integral form to a local form of the conformal
Ward identity

〈
T (z)φ1(z1, z̄1) . . . φn(zn, z̄n)

〉

=
n∑

p=1

(
Δp

(z − zp)2
+ 1

z − zp

∂

∂zp

)〈
φ1(z1, z̄1) . . . φn(zn, z̄n)

〉
. (1.35)

Clearly, an analogous form holds true for T̄ (z̄), and is obtained from (1.35) by re-
placing z �→ z̄, zp �→ z̄p and Δp �→ Δp . It is important here that the scaling oper-
ators are all primary, and as we shall see shortly, Eq. (1.35) does not hold if this
condition is not met. The main feature is the singular behaviour when z → zp . The
two terms therein have a clear meaning. The first one describes the change in the
primary operator φ and comes from the Jacobian in the transformation law (1.7).
The second one describes the change in the coordinates and reflects the fact that the
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energy-momentum tensor T is the infinitesimal generator of conformal transforma-
tions. These two terms give the most simple way a scaling operator can transform.

One isolates this singular behaviour in defining an operator product expansion
(OPE) of the energy-momentum tensor T with a primary operator φ

T (z)φ(z1, z̄1) =
(

Δ

(z − z1)2
+ 1

z − z1

∂

∂z1

)
φ(z1, z̄1) + regular terms (1.36)

where the so-called ‘regular terms’, whose average vanishes, are non-singular when
z → z1.

How does the energy-momentum tensor T (z) transform under a conformal trans-
formation? One may characterise it by the averages

〈
T (z)

〉= 0,
〈
T (z1)T (z2)

〉= c/2

(z1 − z2)4
(1.37)

where one has fixed the energy scale and one has the conformal weights ΔT = 2
and ΔT = 0, as already suggested from the free-field expression (1.30). Since
the energy-momentum tensor is conserved, the well-known Okubo-Fubini-Furlan-
Takahashi non-renormalisation theorems [7] from quantum field-theory assert that
its conformal weights retain their values from classical, non-renormalised field-
theory. The universal constant c, which will turn out to be the single most important
constant in conformal field-theory, is called the central charge. T generates the
following change onto itself, where Cz is a simple contour around the point z

δε

〈
T (z)

〉= 1

2π i

∮

Cz

dz′ ε
(
z′)〈T

(
z′)T (z)

〉

= 1

2π i

∮

Cz

dz′ ε
(
z′) c/2

(z′ − z)4

= c

12
ε′′′(z) (1.38)

by the residue theorem. Since for c �= 0 this is non-vanishing for a non-projective
transformation, T (z) is a quasi-primary, but not a primary scaling operator. For a
non-vanishing central charge, the infinite-dimensional Lie algebra of analytic con-
formal transformation is broken down to the projective conformal transformations
sl(2,R). Such a fluctuation-induced symmetry-breaking is called an anomaly, and
c is sometimes referred to as ‘conformal anomaly number’. The equivalent OPE
reads

T (z)T
(
z′)

= c/2

(z − z′)4
+ 2

(z − z′)2
T
(
z′)+ 1

z − z′
∂

∂z′ T
(
z′)+ regular terms (1.39)

and one recognises, besides the two expected terms for any scaling operator, a fur-
ther singular contribution. This extra term distinguishes the OPE of T from the OPE
(1.36) of a primary operator. It is possible to integrate the above infinitesimal trans-
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formation of T (z). The calculation being tedious and un-inspiring, we merely quote
the transformation law under a conformal transformation w = w(z)

T (z) = T (w)

(
dw

dz

)2

+ c

12
{w,z} (1.40)

and where one also needs the Schwarzian derivative

{w,z} := w′′′(z)
w′(z)

− 3

2

(
w′′(z)
w′(z)

)2

. (1.41)

Exercise 5 For a projective conformal transformation w(z) = αz+β
γ z+δ

∈ sl(2,R) with
αδ − βγ = 1, verify that {w,z} = 0.

Exercise 6 Use the logarithmic transformation (1.19) to show that on an infinitely
long strip of finite width L and with periodic boundary conditions, the energy-
momentum tensor becomes

Tstrip(w) =
(

2π

L

)2(
Tplane(z)z

2 − c

24

)
. (1.42)

In particular, (1.42) implies 〈Tstrip(w)〉 = − c
24 ( 2π

L
)2. This is the analogue of the

Casimir effect, which originally described the lowering of the vacuum energy be-
tween two large parallel conducting plates at a finite distance. To make this more
explicit in our context, write w = u + iv for the complex coordinate on the strip.
The energy operator (or quantum hamiltonian) is obtained by integrating over a
section of the strip

H = 1

2π

∫ L

0
dv Tuu(v) = 1

2π

∫ L

0
dv
(
Tstrip(w) + T̄strip(w̄)

)
(1.43)

such that the ground-state (vacuum) energy of the hamiltonian H becomes

E0 = 1

2π

(
2π

L

)2(
− c

24

)

︸ ︷︷ ︸
〈Tstrip(w)〉

×2 × L = −πc

6

1

L
. (1.44)

In our statistical mechanics context, the partition function can be expressed through
a trace over the transfer matrix T , according to Z = trT L. Since T plays the rôle
of a time-evolution operator at imaginary times ϑ , one can introduces a quantum
hamiltonian via T = e−ϑH , such that Z = tr e−LϑH . In this way, one has a cor-
respondence between a classical 2D statistical mechanics model, described by the
classical hamiltonian H , and an one-dimensional quantum system described by the
quantum hamiltonian H . We shall draw two conclusions from this correspondence:

1. For a 2D classical system, at its critical point, on the strip of finite width L,
(1.44) gives the following expression for the density of the Gibbs potential

g = gbulk − πc

6
L−2 + o

(
L−2) (1.45)
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where the non-universal bulk contribution gbulk was eliminated from our discus-
sion by the first condition (1.37). Equation (1.45) describes a universal finite-size
effect for the critical Gibbs potential and furnishes a very efficient and often-used
algorithm for the determination of the value of the central charge c in a given
model. For example, in the 2D Ising universality class one has c = 1

2 .
2. One may equally well consider an one-dimensional quantum system defined by

the quantum hamiltonian H . From the above correspondence, the width L of
the strip can be identified with the temperature T of the quantum system, via
L−1 ↔ kBT . Similarly, the ground state energy is related to the Gibbs potential
of the quantum system via E0(L) ↔ g/(kBT ). This correspondence depends for
its validity on the necessary condition of a linear energy-momentum dispersion
relation E(p) 
 vs|p|, at least in the low-momentum range |p| → 0, and where
vs is the speed of sound in the quantum system.

If we choose units such that vs = 1, one reads off from (1.44) the Gibbs po-
tential density g = −(πc/6)(kBT )2 + o(T 2). Hence, the specific heat of the 1D

quantum system becomes, for T → 0

C = −T
∂2g

∂T 2
= πc

3
k2

BT (1.46)

which allows to measure the value of c in 1D quantum systems with a linear
dispersion relation.7

Example Consider the ideal 1D Bose gas. With the speed of sound vs = 1, one has
the linear dispersion relation εp = |p| and the number of particles at momentum p

is given by np = (exp(εp/kBT ) − 1)−1. Hence the total energy becomes

E =
∑

p

εpnp 
 1

2π

∫ ∞

0
dp |p|(e|p|/(kBT ) − 1

)−1 × 2 = π

6
k2

BT 2

and finally the specific heat C = ∂E/∂T = π
3 k2

BT . Comparison with Eq. (1.46)
gives the central charge c = 1 for the 1D free boson.

Exercise 7 Show that c = 1
2 for the 1D ideal Fermi gas.

Finally, we remark that c may be viewed as a measure of the importance of fluc-
tuation effects at the critical point. For example, mean-field theories do not contain
fluctuations, and one finds indeed c = 0.

7To dissipate any belief that linear, massless dispersion relations would only belong to the ficti-
tious worlds of the stringy theorist: exactly this kind of dispersion relation is actually realised in
graphene, where the ‘carriers of the charge behave as (2+1)D ultra-relativistic particules without
mass’ [32].
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1.3 The Virasoro Algebra

We now have to re-analyse the algebraic content of conformal invariance with a non-
vanishing central charge c �= 0. This can be done by a formal mode decomposition
of the energy-momentum tensor T (z) =∑∞

n=−∞ Lnz
−n−2. Alternatively, one may

define the modes through their action on a primary scaling operator φ

Lnφ(z1, z̄1) = 1

2π i

∮

C1

dz (z − z1)
n+1T (z)φ(z1, z̄1) (1.47)

where C1 is a contour which encloses the point z1. The complete set of the Ln (and
similarly the L̄n defined analogously) generates the complete set of 2D conformal
transformations. From this definition, the commutators of the Ln, L̄n can be worked
out. Since we shall present the technique to do so when discussing later the free
boson, we merely quote the result

[Ln,Lm] = (n − m)Ln+m + c

12

(
n3 − n

)
δn+m,0

[Ln, L̄m] = 0 (1.48)

[L̄n, L̄m] = (n − m)L̄n+m + c

12

(
n3 − n

)
δn+m,0.

We see that the conformal generators form a pair of commuting Virasoro algebras
vir ⊕ vir. Their structure is characterised by the value of the central charge c. The
projective conformal transformations sl(2,R) ⊂ vir make up the maximal finite-
dimensional sub-algebra and do not depend on c.

The novice might find it helpful to recall the algebraic theory of angular momen-
tum: the Lie algebra so(3) = 〈J±, J3〉 has in the chosen basis the commutators

[J3, J±] = ±J±, [J+, J−] = 2J3. (1.49)

The states of the representation Rj , denoted by |jm〉, are characterised by the quan-
tum numbers j and m. The generator J3 is used to measure m, via J3|jm〉 = m|jm〉.
A highest-weight state is defined by the condition J+|jj 〉 = 0. Then one uses a lad-
der operator to move between states, according to J−|jm〉 = αjm|j m− 1〉 and the
constant αjm can be found from the commutator. Since so(3) is a compact Lie alge-
bra, its unitary representations Rj are finite-dimensional (indeed, if j is integer or
half-integer, one can show that J−|j − j 〉 = 0 which leads to dimRj = 2j + 1).

We now outline the main facts of the representation theory of vir. In order to set
up the algebraic machinery, reconsider the OPE with a primary operator (from now
on, we drop the dependence on z̄1)

T (z)φ(z1) =
(

Δ

(z − z1)2
+ 1

z − z1

∂

∂z1

)
φ(z1) + regular terms

=
∑

n∈Z

Ln(z1)

(z − z1)n+2
φ(z1) (1.50)

and comparison gives the correspondences
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L−1(z1)φ(z1) = ∂

∂z1
φ(z1)

L0(z1)φ(z1) = Δφ(z1) (1.51)

Ln(z1)φ(z1) = 0 for all n > 0.

Often, we shall write Ln = Ln(0) for brevity. Denote the vacuum state by |0〉. We
postulate that |0〉 is conformally invariant, i.e. Ln|0〉 = 0 for all n ≥ −1. Then define
the highest-weight state as

|Δ〉 := lim
z→0

φ(z)|0〉. (1.52)

Then, a scaling operator φ is primary if and only if (i) Ln|Δ〉 = 0 for all n ≥ 1 and
(ii) L0|Δ〉 = Δ|Δ〉. In constructing unitary representations of vir, one uses first the
L−n as ladder operators to build up the states, according to

|Δ;n1, . . . , nk〉 := L−nk
. . .L−n1 |Δ〉 (1.53)

with n1, . . . , nk > 0.

Exercise 8 (i) A scaling operator φ is quasi-primary if and only if L0|Δ〉 = Δ|Δ〉
and L1|Δ〉 = 0. (ii) A scaling operator φ is primary if and only if L0|Δ〉 = Δ|Δ〉
and L1|Δ〉 = L2|Δ〉 = 0.

The generator L0 acts as a counting operator, according to

L0|Δ;n1, . . . , nk〉 = L0L−nk
. . .L−n1 |Δ〉

= nkL−nk
. . .L−n1 |Δ〉 + L−nk

L0L−nk−1 . . .L−n1 |Δ〉
= (nk + . . . + n1 + Δ)|Δ;n1, . . . , nk〉. (1.54)

The state |Δ;n1, . . . , nk〉 is called a secondary state, with level n1 + . . . + nk . Any
state which is not a highest-weight state related to a primary operator, according to
(1.52), is a secondary state. We list a few examples of secondary states:

1. |Δ;1, . . . ,1〉 = Ln
−1|Δ〉 = limz→0 ∂n

z φ(z)|0〉.
2. |T 〉 := L−2|0〉 = T (0)|0〉 is a quasi-primary state, since L1|T 〉 = 0. However,

since L2|T 〉 = [L2,L−2]|0〉 = c/2|0〉, it is not primary for c �= 0.
3. Consider the following state, at level n = 2

∣∣Φ(2)
〉 :=

(
L−2 − 3

2(2Δ + 1)
L2−1

)
|Δ〉. (1.55)

Straightforward commutator calculations give

L1
∣∣Φ(2)

〉= 0, L2
∣∣Φ(2)

〉= 1

2

16Δ2 + (2c − 5)Δ + c

2Δ + 1
|Δ〉, (1.56)

hence the state is quasi-primary. However, it is only primary, if a certain relation
between c and Δ is satisfied. For example, if we take c = 1

2 , the state |Φ(2)〉 is
primary only if Δ = 1

16 or 1
2 .
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Pursuing the quest for unitary representations of vir, one must next define the
notion of a length, which in turn requires the construction of dual states 〈Δ|, so that
one may naturally write for the norm ‖Ln|Δ〉‖2 = 〈Δ|L†

nLn|Δ〉. A natural way of
defining such a structure is to work in polar coordinates, z = ρeiϕ and to introduce a
radial ordering. Then a natural duality map relates ρ � 1 with ρ � 1 and we shall
use here as a duality map the projective conformal transformation

z �→ z′ = −1

z
(1.57)

and from (1.40) it follows that z2T (z) = z′2T (z′). Therefore
∑

n∈Z
z−nLn = z2T (z) = z′2T

(
z′)=

∑

n∈Z
z+nL†

n (1.58)

where one defines the adjoint generators L
†
n as the dual components. One may read

off the hermiticity condition

L†
n = L−n. (1.59)

This is a natural result since the commutator [Ln,L−n] is in the Cartan sub-algebra
h = 〈L0, c〉 of vir. Especially, L

†
0 = L0 is hermitian, so that the conformal weights

Δ must be real numbers. In contrast to finite-dimensional Lie algebras (such as
so(3)), the hermiticity of the generators is not sufficient to guarantee the unitarity of
the representations, as we shall discuss below for the case of the Virasoro algebra.

The above discussion was centred at the origin but can be brought to an arbitrary
position z1 by the relation φ(z1)|0〉 = ez1L−1 |Δ〉. Since under the duality transfor-
mation (1.57), a primary operator becomes φ(z′) = z2Δφ(z), the dual states (located
at infinity) are constructed as

〈Δ| := lim
z1→∞〈0|φ(z1)z

2Δ
1

and one may check that the orthogonality relation 〈Δ|Δ′〉 = δΔ,Δ′ holds true. At a

different position z1, the dual state is 〈0|φ(z1) = 〈Δ|z−2L0
1 e(1/z1)L1 .

Exercise 9 Verify that the two-point function 〈0|φ(z1)φ(z2)|0〉 = (z1 − z2)
−2Δ =

〈φ(z1)φ(z2)〉 is correctly reproduced. The useful identity 〈Δ|Ln
1Lm

−1|Δ〉 =
δn,mn!�(n + 2Δ)/�(2Δ) can be proven by induction, where �(x) is Euler’s
Gamma-function.

We have already mentioned that the conformal transformation w = L
2π

ln z trans-
forms the complex plane C into the infinitely long strip of finite width L, and with
periodic boundary conditions. Then, the quantum hamiltonian (energy operator) and
the momentum operator on the strip can be expressed in terms of the modes L0, L̄0

as follows:

H = 2π

L
(L0 + L̄0) − πc

6

1

L
, P = 2π

L
(L0 − L̄0). (1.60)
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We shall need these relations below several times, for instance when discussing
modular invariance. Implicitly, the ground-state energy has been set to E0 = 0 in
the L → ∞ limit.

Proof To derive (1.60), recall that the quantum hamiltonian H and the momentum
operator P can be expressed in terms of the energy-momentum tensor T (w) on the
strip, with the coordinates w = u + iv

H = 1

2π

∫ L

0
dv
(
T (w) + T̄ (w̄)

)
, P = 1

2π

∫ L

0
dv
(
T (w) − T̄ (w̄)

)
.

From the transformation law (1.42), one has T (w)dw = ( 2π
L

)2[z2T (z)− c
24 ]dw and

combining this with the mode expansion (1.50) in the plane, it follows that

1

2π

∫ L

0
dv T (w) = 2π

L2

∫ L

0
dv

[ ∞∑

n=−∞
Ln exp

(
−n

2π

L
(u + iv)

)
− c

24

]

= 2π

L

[
L0 − c

24

]
.

An analogous argument applies to T̄ (w̄). Combining these gives the assertion. �

1.4 Kac Formula and Unitary Minimal Models

Unitary representations are characterised by the absence of negative-norm states
and we now inquire whether the hermiticity condition (1.59) of the Virasoro gener-
ators is sufficient to obtain it.

We carry out this discussion for the various levels of the representation. At
level 0, no information is obtained, since we have simply the normalisation
〈Δ|Δ〉 = 1. At level 1, we have the single state L−1|Δ〉 with norm

∥
∥L−1|Δ〉∥∥2 = 〈Δ|L1L−1|Δ〉 = 2Δ. (1.61)

Therefore, a necessary condition for unitarity is Δ ≥ 0. In the same way, since the
norm of the energy-momentum tensor is

∥∥T |0〉∥∥2 = 〈0|L2L−2|0〉 = c

2
, (1.62)

the further necessary condition c ≥ 0 for unitarity follows.
Significant information is obtained at level 2. There are two independent states

which we take to be L−2|Δ〉 and L2−1|Δ〉. Unitarity requires that the matrix

M2 :=
( 〈Δ|L2L−2|Δ〉 〈Δ|L2L

2−1|Δ〉
〈Δ|L2

1L−2|Δ〉 〈Δ|L2
1L

2−1|Δ〉

)

(1.63)

should be positive definite. A necessary condition for this is the positive definiteness
of the Kac determinant
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Fig. 1.4 Vanishing curves
Δ = Δr,s for the first four
levels. In the regions labelled
according to their level n,
unitarity does not hold, since
detn(c,Δ) < 0. The first few
intersection points are
indicated [26]

det2(c,Δ) :=
∣∣∣
∣∣
〈Δ|L2L−2|Δ〉 〈Δ|L2L

2−1|Δ〉
〈Δ|L2

1L−2|Δ〉 〈Δ|L2
1L

2−1|Δ〉

∣∣∣
∣∣

=
∣∣∣∣∣
4Δ + 1

2c 6Δ

6Δ 4Δ(2Δ + 1)

∣∣∣∣∣

= 2Δ
(
16Δ2 + 2(c − 5)Δ + c

)

= 32Δ(Δ − Δ+)(Δ − Δ−), (1.64)

where we also wrote down its important factorisation property, and let

Δ±(c) := 5 − c ± √
(1 − c)(25 − c)

16
. (1.65)

Hence det2(c,Δ) changes sign when passing in the (c,Δ) plane one of the curves
Δ = Δ±(c). One may define in the (c,Δ) plane a region (labelled ‘2’ in Fig. 1.4),
bounded by the two curves Δ = Δ±(c), where the theory cannot be unitary. On
the other hand, in the outside of this region compatibility with unitarity is not yet
affected.

Very similar results hold true at any level n. Using the following parametrisation

c = cm := 1 − 6

m(m + 1)

Δr,s = Δm−r,m+1−s := [r(m + 1) − sm]2 − 1

4m(m + 1)
,

(1.66)

the Kac determinant is given by the celebrate Kac formula

detn(c,Δ) = an

n∏

r,s=1;1≤rs≤n

(Δ − Δr,s)
p(n−rs), (1.67)

where an is a known positive constant, r and s are positive integers and p(k) is the
number of partitions of the integer k.

As for level 2, one may identify regions where the Kac determinant is negative
and unitarity cannot be satisfied. In Fig. 1.4, the non-unitary regions are indicated for



20 M. Henkel and D. Karevski

the levels 3 and 4. This makes it plausible, and indeed can be formally demonstrated,
that the entire region Δ > 0 and 0 < c < 1 will be non-unitary. The only exception
to this are certain intersection points between several of the lines Δ = Δr,s , the first
few of which are also indicated in Fig. 1.4.

At level 2, we have already written down the state |Φ(2)〉 which indeed becomes
primary along the two curves Δ = Δ1,2 = Δ−(c) and Δ = Δ2,1 = Δ+(c). Fur-
thermore, its norm vanishes, ‖|Φ(2)〉‖ = 0. One calls |Φ(2)〉 a null state and the
corresponding primary scaling operator a null operator. A unitary representation
can only be obtained if the quotient space with respect to |Φ(2)〉 is considered. Re-
markably, and this holds true since the Kac determinant detn(c,Δ) always divides
detn+1(c,Δ), analogous conclusions hold true at any level n. One identifies the set
of null states and considers the quotient space with respect to them. If the parameter
m in the parametrisation (1.66) of the central charge is an integer m = 2,3,4,5, . . .,
it can be mathematically proven that no non-positive norm states remain in the re-
sulting quotient space, but the details go much beyond the scope of this introduction.

The primary operators φr,s , with conformal weight Δ = Δr,s , so identified, make
up what is called a unitary minimal model. These are the most simple possible
conformal field-theories. For each given integer m ≥ 2, a unitary minimal model
contains a finite list of admissible primary operators φr,s , with 1 ≤ r ≤ m − 1 and
1 ≤ s ≤ m. Their conformal weights Δr,s are listed in the Kac table. Summarising:

Theorem (Friedan, Qiu, Shenker) The Virasoro algebra admits unitary represen-
tations in exactly two cases:

1. c ≥ 1 and Δ ≥ 0, with a priori an infinite number of primary operators.
2. The unitary minimal models, characterised by an integer m = 2,3,4, . . .. The

central charge c = cm < 1 is given by (1.66) and the Kac table gives the finite
list of the conformal weights Δr,s , with 1 ≤ r ≤ m − 1 and 1 ≤ s ≤ m.

While this theorem precisely states the necessary conditions for unitarity of the
irreducible representations of vir, Goddard, Kent and Olive have shown, via the
so-called ‘coset construction’ that there is at least one explicitly unitary conformal
field-theory for each unitary minimal model. The above conditions are therefore also
sufficient for unitarity, at least for c < 1.

Example We illustrate the content of the theorem in the special case of the 2D Ising
universality class. We had already mentioned before that c = 1

2 in this universality
class, which corresponds to m = 3. The Kac table then takes the following form

r s

1 2 3

2 1
2

1
16 0

1 0 1
16

1
2
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and we see that because of the symmetry Δr,s = Δm−r,m+1−s , each admissible value
of the conformal weights occurs twice. Besides the identity operator 1, with the con-
formal weight Δ1 = 0, there are two more primary operators. While the entire dis-
cussion focussed on the left-hand Virasoro generators Ln, it can be repeated identi-
cally for the right-handed generators L̄n. In trying to identify the primary operators
with the physical observables in the Ising model, recall that the most interesting
ones, such a magnetisation density and energy density, are scalars under rotations
so that we can expect that Δr,s = Δr,s . If one identifies

1 = φ1,1 = φ2,3, σ = φ1,2 = φ2,2, ε = φ2,1 = φ1,3 (1.68)

one obtains the scaling dimensions

x1 = 2Δ1,1 = 0, xσ = 2Δ1,2 = 1

8
, xε = 2Δ2,1 = 1 (1.69)

which correctly reproduce the known exact values of the 2D Ising model! From
(1.6), one may derive the values of the conventional critical 2D Ising model expo-
nents α = 0, β = 1

8 , ν = 1 and so on.8

Exercise 10 The three-states Potts model may be described in terms of a
discrete angular variable θ = 0, 2π

3 , 4π
3 , and a classical hamiltonian H =

−J
∑

(i,j) cos(θi − θj), where the sum extends over the nearest-neighbour pairs of a
square lattice. At the critical point, numerical estimates suggest with a high degree
of accuracy that c = 4

5 exactly. Can you reproduce the exact conventional critical ex-
ponents α = 1

3 , β = 1
9 and ν = 5

6 from a unitary minimal model? (Hint: the primary
operators φr,s with s = 2t even are not realised in the three-states Potts model.)

1.5 From Characters to Modular Invariance

Minimal models contain more than merely information on primary operators. A sys-
tematic overview on the secondary operators present is obtained through the char-
acters of the irreducible representation of vir. In the generic case, that is not yet for
minimal models, the character is for Δ �= 0

χ(Δ,c) = χΔ(q) := trqL0−c/24 = qΔ−c/24
∞∑

n=0

p(n)qn (1.70)

where again p(n) stands for the number of partitions of the integer n and counts
the number of secondary states at level n. We shall use below one or the other

8The physical content of a mathematical classification has still to be established by external evi-
dence. To quote a well-known example, the periodic system of the chemical elements follows from
the representation theory of the rotation Lie group so(3). Still, that classification alone does not
tell you that the 8th element keeps fires burning and allows vertebrates to breathe or that the 79th
element has since prehistoric times attracted the greed of many.
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notation, depending on whether the dependence on Δ and c or rather on q needs to
be emphasised.

By definition, p(0) = p(1) = 1. Since 2 = 1+1, one has p(2) = 2. Since 3 = 2+
1 = 1+1+1, one has p(3) = 3. Since 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1,
one has p(4) = 5 and so on. A generating function is given by

1

P(q)
:=

∞∑

n=0

p(n)qn =
∞∏

�=1

(
1 − q�

)−1 (1.71)

and long lists of values of p(n) can be found in mathematical tables.
For unitary minimal models, the presence of null states requires a careful count-

ing of the levels. For example, the primary operator φr,s has a null vector at level
rs with conformal weight Δr,s + rs = Δm+r,m+1−s . Furthermore, since Δr,s =
Δm−r,m+1−s , there is a further null state at level (m − r)(m + 1 − s), with con-
formal weight Δr,s + (m − r)(m + 1 − s) = Δ2m−r,s . These two primary states and
their entire sets of secondary states must eliminated in the counting of secondary
states of the unitary minimal character χr,s . The arguments just given suggest that
to this order, one has

χ(Δr,s, cm) − χ(Δ2m−r,s , cm) − χ(Δm+r,m+1−s , cm).

Continuing in this way, one obtains further null states at higher levels, correcting the
last two contributions in the above expression. Remarkably, it turns out that the sets
of higher null states intersect and that essentially two infinite ladders of null states
exist. A careful analysis leads to the Rocha-Caridi formula for the unitary minimal
character, with P(q) having been defined in (1.71)

χr,s = χ(Δr,s, c) −
∞∑

k=1

[
χ(Δ2km−r,s , c) + χ(Δr+m(2k−1),m+1−s , c)

− χ(Δ(2k+1)m−r,m+1−s , c) − χ(Δr+2km,s, c)
]

=
+∞∑

k=−∞

[
χ(Δr+2km,s, c) − χ(Δr+m(2k−1),m+1−s , c)

]

= qΔr,s−c/24 1

P(q)

∞∑

k=−∞

(
qΔ2mk+r,s − qΔ2mk+r,−s

)
. (1.72)

The character χr,s = χr,s(q) = qΔr,s−c/24∑∞
n=0 dn(Δr,s)q

n counts the number
dn(Δr,s) of secondary states at level n, and for which tables are available in the
literature. Since characters are generating functions for the entire set of states in the
irreducible representations of the Virasoro algebra, they provide this complete in-
formation a single analytic expression (mathematically, these are related to Jacobi
θ -functions).

Exercise 11 Take into account that L−11 = 0 and derive the generic character
χ(0, c) = (1 − q)q−c/24P(q)−1. Further show that the generating function of the
number of quasi-primary states at each level is given by χQP(Δ, c) = (1 − q)×
χ(Δ,c) + qδΔ,0.
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In this way, the unitary representations of a single Virasoro algebra have been
constructed. The representation space, built from the highest weight primary state
with conformal weight Δ = Δr,s , is referred to as the Verma module and denoted
generically by VΔ, or simply by Vr,s for minimal models. The full Hilbert space of
the conformal field-theory (CFT) is then made out of direct sums of pairs of Verma
modules

V =
⊕

Δ,Δ

nΔ,ΔVΔ ⊗ VΔ (1.73)

where the positive integers nΔ,Δ specify how many distinct primary operators with

the conformal weights (Δ,Δ) are present in the CFT under consideration. There-
fore, a CFT (or a universality class in statistical mechanics) can be characterised by
the value of the central charge c and the primary operators present in the theory.
In a complete CFT, the primary operators satisfy between themselves an operator
product algebra (OPA), given by the following operator product expansions (OPE)
between the primary operators

φa(z1, z̄1)φb(z2, z̄2) =
∑

c

Cabcz
−Δab,c

12 z̄
−Δab,c

12 φc(z2, z̄2) + regular terms (1.74)

where z12 = z1 − z2, Δab,c := Δa + Δb − Δc and similarly for the right-handed
factor. This kind of expansion is supposed to be valid in the limit where z12, z̄12 → 0
and when inserted into correlation functions. The OPE-coefficient Cabc was already
met in Eq. (1.17), giving the projectively invariant three-point function. Explicit, if
very cumbersome, formulæ exist which express Cabc through the central charge and
the conformal weights.

The requirement of consistency of the OPA Eq. (1.74) with the existence of null
operators is taken into account by the existence of fusion algebras. Written formally
as Va � Vb =∑

c Nc
abVc , this associative and commutative algebra describes which

primary operators φc arise in the fusion of the primary operators φa and φb . For
unitary minimal models of central charge c = cm, one has explicitly

Vr1,s1 � Vr2,s2 =
r1+r2−1∑′

r3=|r1−r2|

s1+s2−1∑′

s3=|s1−s2|
Vr3,s3 (1.75)

and the primes on the sum indicate the restrictions 1 ≤ r3 ≤ m − 1 and 1 ≤ s3 ≤ m.

Exercise 12 Check that in the 2D Ising universality class, one has the fusion alge-
bra

σ � σ = 1 + ε, ε � ε = 1, σ � ε = σ

and obviously, 1 � 1 = 1, 1 � σ = σ and 1 � ε = ε. Is this compatible with the
global Z2-symmetry of the classical Ising hamiltonian?

While the fusion algebras limit the admissible values of (Δr,s,Δr,s), they do not
tell which ones are actually realised. This last piece of information comes from the
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Fig. 1.5 Parametrisation of
the torus by τ ∈ C and its
modular transformation
generated by (a) T and
(b) S [26]

requirement of modular invariance on the torus. Mathematically, a torus is given
by a parallelogramme in the complex plane, with vertices at the points 0, 1, τ , 1 + τ

and with the opposite edges identified, see Fig. 1.5. Starting from a cylinder with
unit circumference and of length Im τ , by twisting the ends by a relative amount Re τ

and glueing them together. On the cylinder the energy and momentum operator of a
CFT can be written as H = 2π(L0 + L̄0)−πc/6 and P = 2π(L0 − L̄0). Therefore,
the partition function of the CFT on the torus reads

Z = tr e−2π Im τH+2π i Re τP = trqL0−c/24q̄L̄0−c/24 =
∑

Δ,Δ

nΔ,ΔχΔ(q)χΔ(q̄) (1.76)

where we have set q := e2π iτ . It is a well-known mathematical fact that the
parametrisation of the torus introduced above is not unique. For example, the trans-
formations S : τ �→ −1/τ and T : τ �→ τ + 1 give the same torus, see Fig. 1.5.
Indeed, they generate together the modular group Sl(2,Z). In general, modular
transformations are of the form τ �→ τ ′ = aτ+b

cτ+d
with ad − bc = 1 and a, b, c, d

being integer. Since the modular transformation always give back the same torus,
the partition function Z should be modular invariant. For unitary minimal models,
the modular transformations are given by the change q �→ q̃ := exp(−2π i/τ) and

T : χr,s(q) → exp

[
2π i

(
Δr,s − c

24

)]
χr,s(q)

S: χr,s(q) →
∑

r ′,s′
Sr ′,s′

r,s χr ′,s′(q),
(1.77)

where

Sr ′,s′
r,s =

√
8

m(m + 1)
(−1)(r+s)(r ′+s′) sin

(
πrr ′

m

)
sin

(
πss′

m + 1

)
. (1.78)

Invariance under T simply means that Δr,s − Δr,s must be an integer, but the con-
straints following from the invariance under S are highly non-trivial. The resulting
invariant partition functions have been classified by Cappelli, Itzykson and Zuber
and it turns out that there is a close relationship to Cartan’s classification of the
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simple complex Lie algebras ADE. The most simple solution is the diagonal one
nΔ,Δ = δΔ,Δ, which gives the partition function of the so-called ‘A-series’

Z(A) = 1

2

m−1∑

r=1

m∑

s=1

|χr,s |2. (1.79)

In writing down the operator content of a model, that is the list of primary operators
and their secondary states, one sometimes also uses the notations (Δr,s) = χr,s and
(Δr,s,Δr ′,s′) = χr,s χ̄r ′,s′ and indicates the vir-representations by the value of their
conformal weights. For example, in this notation Z(A) = 1

2

∑m−1
r=1

∑m
s=1(Δr,s,Δr,s)

and it is clear that all primary operators therein are scalars.

Example For the 2D Ising universality class, a minimal model with m = 3, this
gives ZIsing = |χ1,1|2 +|χ1,2|2 +|χ2,1|2 = (0,0)+ ( 1

16 , 1
16 )+ ( 1

2 , 1
2 ). Put into words,

all primary operators are predicted to be scalar and the complete list 1 = (0,0),
σ = ( 1

16 , 1
16 ), ε = ( 1

2 , 1
2 ) of admissible primary operators is present, in agreement

with the ‘experimental’ identifications we admitted earlier. Especially, the scaling
dimensions x1 = 0, xσ = 2Δ1,2 = 1

8 and xε = 2Δ2,1 = 1 are immediately read off.

Different fusion algebras will in general lead to different modular-invariant parti-
tion functions. For example, there are two modular-invariant partition functions for
the unitary minimal model with m = 5, or c = 4

5 . The first one, which corresponds
to the A-series, describes what is known as the ‘tetracritical Ising model’, but there
is a second solution, which only contains the primary operators φr,s with s = 1,3,5
and which describes the universality class of the three-states Potts model, whose
partition function is the first member of the ‘D-series’. Explicitly

ZPotts-3 = |χ1,1|2 + |χ2,1|2 + |χ3,1|2 + |χ4,1|2 + 2|χ2,3|2 + 2|χ1,3|2
+ χ1,1χ̄4,1 + χ2,1χ̄3,1 + χ3,1χ̄2,1 + χ4,1χ̄1,1

= (0,0) +
(

2

5
,

2

5

)
+
(

7

5
,

7

5

)
+ (3,3) + 2

(
1

15
,

1

15

)
+ 2

(
2

3
,

2

3

)

+ (0,3) +
(

2

5
,

7

5

)
+
(

7

5
,

2

5

)
+ (3,0). (1.80)

One may read off the scaling dimensions xσ = 2Δ2,3 = 2
15 and xε = 2Δ2,1 = 4

5 .
Still, the ADE-classification of the modular-invariant partition functions does not

amount to a full classification of the 2D conformally invariant universality classes,
not even in the restricted context of minimal models. Examples of distinct unitary
minimal models, distinguished by their OPA, but with the same modular-invariant
partition functions, are known. The first one occurs in the A-series with m = 4 [1].

Example We illustrate the modular transformations generated by S in a simple ex-
ample. Let τ = iδ with δ real, so that the torus becomes a rectangle. Then under
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S, one has δ → 1/δ and q → q̃ = e−2π/δ . Consider the generating function of the
partitions of the integers P(q) Eq. (1.71)

P(q) =
∞∏

n=1

(
1 − e−2πδn

)=
∞∑

n=−∞
exp

(−πδ
(
3n2 + n

)+ iπn
)

(1.81)

by Euler’s pentagonal theorem. The modular transformation is carried out with
the help of the Poisson re-summation formula

∞∑

n=−∞
f (n) =

∞∑

p=−∞

∫ ∞

−∞
dx f (x)e2π ipx. (1.82)

Since cos((2p + 1)π/6) = (−1)n
√

3
2 if p = 3n or p = 3n − 1 and vanishes if p =

3n + 1, one finds

P(q) = 2√
3δ

exp

[
π

12

(
δ − δ−1)

] ∞∑

p=−∞
cos

(
(2p + 1)π

6

)
exp

(
−p(p + 1)π

3δ

)

= (−iτ)−1/2 exp

[
− iπ

12

(
τ + 1

τ

)]
P(q̃). (1.83)

As an application, we consider the field-theory of the free boson. Since the
central charge of the 1D free boson is c = 1, one expects the generic character
q−1/24P(q)−1. In view of the modular transformation properties of P(q), it turns
out, however, that the modular-invariant partition function of the free boson reads

Zboson := q−1/24q̄−1/24 1

P(q)

1

P(q̄)
(Im τ)−1/2. (1.84)

The non-trivial factor (Im τ)−1/2 is usually obtained from a long and intricate dis-
cussion of the zero-mode subtraction in the functional integral. We shall come back
to this result below.

We close this long section with two final observations:
(A) The null operators lead to very explicit predictions. We have seen that they

lead to null states of vanishing norm. Therefore, when one inserts them into a corre-
lator with other primary operators φa , one has 〈φ1 . . . φnΦ

(2)〉 = 0, where for defi-
niteness we used the explicit operator known at level 2. This leads to new, non-trivial
differential equations for the n-point functions from which these can be found. For
the above example, one finds

[
n∑

k=1

(
Δk

(z − zk)2
+ 1

z − zk

∂

∂zk

)
− 3

2(2Δ + 1)

∂2

∂z2

]

× 〈
φ1(z1) . . . φn(zn)φ(z)

〉= 0. (1.85)

In this way, the use of unitary minimal models permits to solve a critical system
from statistical mechanics. We refer to the literature for details.
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(B) While unitarity is an essential ingredient in the construction of quantum field-
theories, it is by no means a requirement in many of the models studied in statistical
mechanics. Also, the Kac formula remains valid for non-integer values of m. For
example, one may set m = p/(p − p′), where p and p′ are relatively prime. Then
one obtains a set of non-unitary minimal models, where Eq. (1.66) is replaced by

c = cp,p′ := 1 − 6(p − p′)
pp′

Δr,s = Δp−r,p′−s := (rp′ − sp)2 − (p − p′)
4pp′ ,

(1.86)

and the Kac table lists the values of Δr,s with 1 ≤ r ≤ p − 1 and 1 ≤ s ≤ p′ − 1.
Since the conformal weights are rational numbers, this class of minimal models
is also called rational conformal field-theory (RCFT). Symbolically, they are de-
noted by Mp,p′ (we use here the convention p < p′) and the unitary minimal model
is the special case Mm,m+1 with m = 2,3,4, . . . an integer. The fusion algebra
(1.75) remains valid, but where now the restrictions on the sum mean 1 ≤ r3 ≤ p−1
and 1 ≤ s3 ≤ p′ − 1. The Rocha-Caridi formula Eq. (1.72) can be generalised simi-
larly, by replacing systematically m �→ p and m + 1 �→ p′, and reads

χr,s =
∞∑

k=−∞

(
χ(Δr+2kp,s , c) − χ(Δr+p(2k−1),p′−s , c)

)
. (1.87)

The most simple non-unitary minimal model is found for p = 2 and p′ = 5.
Then c = − 22

5 and the Kac table contains two primary operators with the conformal
weights Δ1,1 = 0 and Δ1,2 = − 1

5 . This conformal theory describes the scaling prop-
erties of the Yang-Lee singularity of the critical 2D Ising model in an imaginary
magnetic field. Another example of a non-unitary theory is percolation, where the
central charge c = 0. This model will be discussed in depth in later chapters of this
volume.

1.6 The Free Boson

In order to illustrate and make more concrete the abstract developments in the pre-
vious sections, we shall now discuss in detail the conformal field-theory of the free
boson. In complex coordinates, the action is S = ∫

dz̄ ∧ dz ∂zϕ∂z̄ϕ which gives the
classical equation of motion ∂z∂z̄ϕ = 0. Then one would write the general solution
as the sums of two terms: ϕ(z, z̄) = ϕ(z) + ϕ̄(z̄). Similarly, the associated Green’s
function G(z, z̄) := 〈φ(z, z̄)ϕ(0,0)〉 satisfies the equation ∂z∂z̄G(z, z̄) = δ(2)(z, z̄),
with the formal solution

G(z, z̄) = −4 ln
|z|
R

= −2 ln
z

R
− 2 ln

z̄

R

where R is a constant. This is nothing but Coulomb’s law in two dimension, so
that the system is often called the Coulomb gas. However, the given solution is
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problematic for the construction of a conformal field-theory, since if R is finite, it
does break scale-invariance and for R → ∞, the Green’s function is ill-defined.

Rather than trying to remedy this, we shall concentrate on a different kind of
observables which do not present this difficulty. Consider the currents

J := i

2
∂zϕ, J̄ := − i

2
∂z̄ϕ. (1.88)

The equations of motion are the conservation laws ∂z̄J = ∂zJ̄ = 0. Hence J = J (z)

and J̄ = J̄ (z̄) are analytic or anti-analytic, respectively. These currents have well-
defined two-point functions

〈
J (z1)J (z2)

〉= 1/2

(z1 − z2)2

〈
J̄ (z̄1)J̄ (z̄2)

〉= 1/2

(z̄1 − z̄2)2
(1.89)

〈
J (z1)J̄ (z̄2)

〉= 0

as one may formally check by symbolic derivation of the Green’s function result
mentioned above. We shall use Eqs. (1.89) as the defining properties of the free
boson and shall make them the starting point of the construction of the associated
CFT. One reads off the scaling dimensions xJ = xJ̄ = 1 and spins sJ = 1 = −sJ̄ .

The quantisation of this classical theory requires to turn the currents J, J̄ into
operators. As operators, they will in general not commute at different positions,
[J (z), J (z′)] �= 0! The necessary ordering in products of such operators is achieved
here by a (bosonic free-field) radial ordering such that for any two space-dependent
operators A(z) and B(w) one has

R
(
A(z)B(w)

) :=
{

A(z)B(w); if |z| > |w|
B(w)A(z); if |z| < |w|. (1.90)

Returning to the free boson, the classical averages (1.89) suggest that a sensible
choice for the OPE of two currents should be

R
(
J (z)J

(
z′))= 1/2

(z − z′)2
+ regular terms

R
(
J (z)J̄

(
z̄ ′))= regular terms (1.91)

R
(
J̄ (z̄)J̄

(
z̄′))= 1/2

(z̄ − z̄′)2
+ regular terms.

As usual, such an OPE will acquire a meaning when inserted into a correlation
function and one concentrates on the singular behaviour when z − z′ → 0.

The next step is to write a meromorphic mode expansion of the currents

J (z) =
∑

n∈Z
Jnz

−n−1, J̄ (z̄) =
∑

n∈Z
J̄nz̄

−n−1 (1.92)

or equivalently the modes can be written in terms of a contour integral

Jn =
∮

C0

dz

2π i
J (z)zn, J̄n =

∮

C̄0

dz̄

2π i
J̄ (z̄)z̄:n (1.93)
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Fig. 1.6 Re-organisation of
complex integration contours

and where C0, C̄0 are simple contours around the origin. The OPE (1.91) is equiva-
lent to the following set of commutator relations

[Jn, Jm] = n

2
δn+m,0, [Jn, J̄m] = 0, [J̄n, J̄m] = n

2
δn+m,0 (1.94)

which form a u(1) ⊕ u(1) Kac-Moody algebra.

Proof The first one of the commutators (1.94) is proven as follows. Form the com-
mutator

[Jn, Jm]
=
∮

C0

dz

2π i
zn

∮

C0

dw

2π i
wmJ(z)J (w) −

∮

C0

dw

2π i
wm

∮

C0

dz

2π i
znJ (w)J (n)

=
∮

C0

dw

2π i
wm

[∮

|z|>|w|
dz

2π i
zn −

∮

|z|<|w|
dz

2π i
zn

]
R
(
J (z)J (w)

)

=
∮

C0

dw

2π i
wm

∮

Cw

dz

2π i
znR

(
J (z)J (w)

)

=
∮

C0

dw

2π i
wm

∮

Cw

dz

2π i
zn

(
1/2

(z − w)2
+ regular terms

)

=
∮

C0

dw

2π i
wm 1

2
nwn−1 = n

2
δn+m,0

where C0 and Cw are simple contours (circles) around 0 and w, respectively. In the
third line, the radial ordering was introduced and in the forth line, reference was
made to Fig. 1.6 for the re-writing of the integration contours for the variables z

(dashed lines) and w (full lines). In the fifth line, recall that the ‘regular terms’ are
regular for z−w → 0 and hence do not contribute to the contour integral, whose sin-
gular contributions are found from the residue theorem. The other two commutators
(1.94) are derived similarly.

The derivation of the Virasoro algebra from the OPE of T (z) with itself, see
p. 15, is done analogously. �

Kac-Moody algebras can be constructed for more general Lie algebras. Consider
a finite-dimensional Lie algebra g, whose generators J a satisfy the commutator rela-
tions [J a, J b] = f ab

cJ
c . If these generators can be associated to conserved currents

J a(z) such that the following OPE is valid

J a(z)J b(w) = k

(z − w)2
δab + f ab

c

1

z − w
Jc(w) + regular terms (1.95)
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the modes J a
n , defined according to J a(z) =∑

n∈Z J a
n z−n−1 satisfy the commuta-

tion relations of the g-Kac-Moody algebra (usually denoted by ĝk)
[
J a

n , J b
m

]= f ab
cJ

c
n+m + knδabδn+m,0. (1.96)

Particle physicists had discussed the algebras under the name of current algebras
long before they became of interest in statistical mechanics and condensed matter,
and before their extensive study by mathematicians, under the name of ‘affine Lie al-
gebras’. The constant k is called the central charge (or the level) of the Kac-Moody
algebra, whose value is characteristic for the Kac-Moody algebra, and characterises
the importance of the quantum fluctuations. For non-abelian Lie algebras g, the cor-
responding fields are no longer free but rather reflect the presence of topological
terms in the so-called ‘Wess-Zumino-Witten models’.

Exercise 13 Use the mode expansion of a primary operator φ(z) = ∑
m∈Z φm ×

z−m−Δ of conformal weight Δ, and the OPE equation (1.50) with the energy-
momentum tensor T (z) =∑

n∈Z Lnz
−n−2 in order to derive the mode commutator

[Ln,φm] = (
n(Δ − 1) − m

)
φn+m.

1.7 The Sugawara Construction

The next step in constructing a CFT for the free boson consists in finding the energy-
momentum tensor. A heuristic argument from particle physics can be used to mo-
tivate the final choice. Critical phenomena are interested in the long-distance, or
low-energy, behaviour of the n-point functions. Particle physicists have the habit of
looking at effective low-energy theories, where in the Feynman diagrams to be con-
sidered the propagator is simply replaced by an effective coupling constant.9 Then
the energy should be proportional to the product of the interacting currents. This
suggests that a good candidate for an energy-momentum tensor might be of the form
T ∼ :JJ :. Of course, a naïve product of two currents would be ill-defined because of
the singular current-current two-point function and a ‘normal ordering’ procedure,
indicated here by : :, must be used to eliminate this difficulty. The solution consists
of considering the product of two currents at a small distance ε (‘point-splitting
procedure’) and letting ε → 0 when appropriate.

With these heuristics in mind, we shall consider here the following definition

T (z) = :JJ :(z) := lim
ε→0

(
J (z + ε)J (z − ε) − 1

8ε2

)
(1.97)

(it can be shown that the precise form of the point-splitting is not important, but
the symmetric form used here shortens the calculations). In order to justify this

9A good example of this is the Fermi theory of weak interactions, where the momentum-
dependence of the propagators of the intermediate weak bosons W± and Z of the unified elec-
troweak theory can be neglected for energies � MW,Z c2 ≈ 80 [GeV].
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definition, one must show that the operator T (z) has the expected properties of an
energy-momentum tensor of a conformal field-theory.

Obviously, one has 〈T (z)〉 = 0, which explains the choice made in (1.97) for the
constant term. Next, we consider the OPE of T (z) with the current J (w) and then
with T (w) itself, which gives

T (z)J (w) = 1

(z − w)2
J (w) + 1

z − w
∂wJ (w) + regular terms

T (z)T (w) = 1

2

1

(z − w)4
+ 2

(z − w)2
T (w) + 1

z − w
∂wT (w) + regular terms.

(1.98)

This is indeed the expected OPE for an energy-momentum tensor and one confirms
once more the central charge c = 1 for the free boson. Furthermore, the conserved
current J (z) is a primary operator, with the expected conformal weight ΔJ = 1.

Proof These OPEs can be checked as follows. First, consider

T
(
z′)J (z)

= lim
ε→0

(
J
(
z′ + ε

)
J
(
z′ − ε

)
J (z) − 1

8ε2
J (z)

)

= lim
ε→0

(
1

2(z′ − z + ε)2
J
(
z′ − ε

)+ 1

2(z′ − z − ε)2
J
(
z′ + ε

)− 1

8ε2
J (z)

)

= 1

(z′ − z)2
J (z) + 1

z′ − z
∂zJ (z) + regular terms

as asserted, and J (z′) = J (z) + (z′ − z)∂zJ (z) + . . . was used in the last step. The
terms not explicitly spelled out are regular in the limit z′ − z → 0. This identity
helps to shorten the computation of the OPE of T (z) with itself

T
(
z′)T (z)

= lim
ε→0

{
T
(
z′)
(

J (z + ε)J (z − ε) − 1

8ε2

)}

= lim
ε→0

{
1

(z′ − z − ε)2

[
J (z + ε)J (z − ε) − 1

8ε2
+ 1

8ε2

]

+ 1

(z′ − z + ε)2

[
J (z + ε)J (z − ε) − 1

8ε2
+ 1

8ε2

]

+ 1

z′ − z − ε

[(
∂zJ (z + ε)

)
J (z − ε) + J (z + ε)

(
∂zJ (z − ε)

)]

+
[

1

z′ − z + ε
− 1

z′ − z − ε

]
J (z + ε)

(
∂zJ (z − ε)

)− 1

8ε2
T
(
z′)
}
. (1.99)

Because of 〈J (z1, z̄1)∂z2J (z2, z̄2)〉 = (z1 − z2)
−3, the last line in the above expan-

sion is potentially singular in the ε → 0 limit and must be treated carefully. We find,
using again the normal ordering prescription (1.97)
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T
(
z′)T (z) = lim

ε→0

{
2

(z′ − z)2
T (z) + 1

4ε2

1

(z′ − z)2
+ 3

4

1

(z′ − z)4

+ 1

z′ − z
∂zT (z) − ε

4ε3

1

(z′ − z)2
− 1

4

1

(z′ − z)4

}
+ regular terms

= 1

2

1

(z′ − z)4
+ 2

(z′ − z)2
T (z) + 1

z′ − z
∂zT (z) + regular terms

(1.100)

as claimed. The last terms in (1.100) come from the last line in (1.99). The terms
which are singular for ε → 0 as well as for z′ − z → 0 cancel out, as it should be
for a well-defined theory. �

Besides the currents, the so-called vertex operators, formally given by

Vα(z) = :exp iαϕ(z): (1.101)

play an important role. Again, a normal-ordering procedure must be introduced to
make this definition meaningful, but for our limited purposes, this will not be ex-
plicitly needed. One finds the following OPEs

J (z)Vα(w) = α

z − w
Vα(w) + regular terms

T (z)Vα(z) = α2

(z − w)2
Vα(w) + 1

z − w

∂

∂w
Vα(w) + regular terms

Vα(z)Vβ(w) = δα+β,0(z − w)−2α2 + regular terms.

(1.102)

Clearly, the vertex operators are primary. In addition, they transform in a simple way
under the action of the conserved current J (z). Going back to the modes Ln and
Jn, one can sharpen the notion of a primary scaling operator, by defining a scaling
operator φ to be a û(1) Kac-Moody primary if (i) |Δ〉 = φ(0)|0〉 is an eigenstate
of both L0 and J0 and (ii) Ln|Δ〉 = Jn|Δ〉 = 0 for all n ≥ 1. The eigenvalue of J0
is called a charge, hence the Kac-Moody primary operator Vα has the conformal
weight ΔVα = α2 and charge α. Since one now has the further ladder operators J−n,
representations of Kac-Moody algebras combine several irreducible representations
of the Virasoro algebra into a single irreducible representation.

One may readily extend the above results to find the following correlator

〈
J (z)Vα1(z1) . . . Vαn(zn)

〉=
(

n∑

�=1

α�

z − z�

)
〈
Vα1(z1) . . . Vαn(zn)

〉
. (1.103)

From the Ward identities and the non-renormalisation theorems for conserved cur-
rents, one expects that for |z| � 1, one should have J (z) ∼ z−2. Combining this
with the above correlator, one obtains the neutrality condition α1 + . . . + αn = 0,
since otherwise, 〈Vα1(z1) . . . Vαn(zn)〉 must vanish. Applying the Wick theorem, the
n-point correlator of the vertex operators reads

〈
Vα1(z1) . . . Vαn(zn)

〉=
∏

i<j

(zi − zj )
2αiαj δα1+...+αn,0. (1.104)
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The scaling operator J J̄ plays a particular rôle, since its scaling dimension xJ J̄ = 2.
It is therefore a marginal scaling operator. Theories with a marginal scaling oper-
ator contain a line of fixed points, along which the critical exponents may change
as continuous functions of the scaling field conjugate to J J̄ . We shall encounter an
example of this when discussing the 2D XY model below.

Proof In a heuristic way, the OPEs (1.102) can be derived as follows. From
the Green’s function of the free field ϕ(z), one has by formal differentiation
〈J (z)ϕ(w)〉 = −i(z − w)−1. Then

J (z)Vα(w) =
∞∑

n=0

(iα)n

n! J (z):ϕ(w)n:

=
∞∑

n=1

(iα)n

n!
n

i

1

z − w
:ϕ(w)n−1: + regular terms

= α

z − w

∞∑

n=1

(iα)n−1

(n − 1)! :ϕ(w)n−1: = α

z − w
Vα(w).

The OPE with T (z) is more subtle, but the repeated application of the OPE with
J (z) already shows that the most singular term is of the form T (z)Vα(w) ∼

α2

(z−w)2 Vα(w) + . . . which permits to read off the conformal weight ΔVα = α2. The
derivation of the other singular term in the OPE, which must be present, does re-
quire an explicit normal-ordering prescription for :ϕ(w)n: and is left to the reader.
Finally, recall that for free, gaussian fields ϕ1,2, one has the standard identity

:eaϕ1 ::ebϕ2 : = :eaϕ1+bϕ2 :eab〈ϕ1ϕ2〉.

Given the Green’s function 〈ϕ(z)ϕ(w)〉 = −2 ln(z−w), a formal computation gives

Vα(z)Vβ(w) = :eiαϕ(z)+iβϕ(w):e2αβ ln(z−w) = Vα+β(w)(z − w)2αβ

and where ϕ(z) = ϕ(w) + (z − w)∂ϕ(w) + . . . was used, which beyond the first
term merely produces further regular contributions. Application of the neutrality
condition gives the last result announced in (1.102). �

The Sugawara construction implies a characteristic relationship between the
modes of the current and the energy-momentum tensor. These were defined as

J (z) =
∑

n∈Z
Jnz

−n−1, T (z) =
∑

n∈Z
Lnz

−n−2. (1.105)

The normal-ordering prescription implies that two generators Jn and Jm commute
under normal ordering, viz. :JnJm: = :JmJn:. Then a formal multiplication of the
meromorphic series in T (z) = :JJ :(z) leads to

Ln =
∑

m∈Z
:Jn−mJn:. (1.106)
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Exercise 14 Given that [Jn, Jm] = n
2 δn+m,0, verify that the generators Ln in (1.106)

satisfy the Virasoro algebra and re-derive the central charge c = 1 for the free boson.

The treatment of non-abelian Kac-Moody algebras ĝk requires a more involved
and precise definition of the normal ordering than we have used here, since one can
no more appeal to free-field-theory. For reference, we quote the result. If g is a semi-
simple Lie algebra, one may from the structure constants define the metric tensor
of g, according to qab = fad

efbe
d . Since detq �= 0, the matrix qab has an inverse,

denoted qab, such that qabq
bc = δc

a . Then the structure constants fabc = qcdfab
d are

fully asymmetric fabc = −fbac = −facb . The ‘dual Coexter number’ g is defined
by f abcfdbc = 2gδa

d . The non-abelian Sugawara form of the energy-momentum
tensor is

T (z) = 1

2

1

k + g
:qabJ

aJ b:(z). (1.107)

Then J a(z) is a primary operator with ΔJ = 1. The central charge of the Virasoro
algebra is

c = k dimg

k + g
. (1.108)

The derivation of the relationship between the modes is left to the reader.

1.8 Compactifications and Modular Invariance

The action S = ∫
dz̄∧dz (∂z̄ϕ)(∂zϕ) of the free gaussian field ϕ(z, z̄) = ϕ(z)+ ϕ̄(z̄)

is invariant under the transformations

ϕ �→ ϕ + const., ϕ �→ −ϕ (1.109)

and one may use these symmetries to restrict the configuration space. For the sim-
ple model at hand, one may identify a circle compactification by identifying two
configurations with fields ϕ and ϕ + 2πρ, where ρ is the compactification radius.
However, under a compactification the vertex operator correlations are unchanged
if one takes α = n/ρ, with n ∈ Z.

A possible physical realisation is the 2D XY model, where on each site i of a
square lattice is attached a continuous variable ϕi ∈ [0,2π) and with the classical
hamiltonian H = −J

∑
(i,j) cos(ϕi −ϕj), where the sum extends over pairs of near-

est neighbours. Alternatively, one may introduce a two-component spin vector σ of
unit length |σ | = 1 and the hamiltonian becomes H = −J

∑
(i,j) σi ·σj. This model

has an un-conventional second-order phase transition, not described by the usual
power-laws but rather by essential singularities. The spin-spin correlator

G(r) = 〈σr · σ0〉 ∼
{

r−1/4 ln1/8 r; if T = Tc

r−η(T ); if T < Tc

(1.110)

remains algebraic in the entire low-temperature phase, with a temperature-dependent
exponent η(T ), whereas limT →Tc η(T ) = 1

4 . This comes about since the mechanism
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of this phase transition is not due to the standard formation of an ordered state but
rather stems from the formation of ‘vortices’. Besides the vortex operators, there
also exist so-called ‘frustration lines’ whose end points are vortices. If the position
r moves once around one of the end points of a frustration line, the value of the field
ϕ(r) increases by 2πρm, with m being an integer. Can one identify these operators
in the framework of CFT?

On the torus, which we have characterised by the complex modular parameter
τ , the compactification condition is

ϕ
(
z + k + k′τ

)− ϕ(z) = 2πρ
(
km + k′m′), (1.111)

where the dependence on z̄ is suppressed. One has the decomposition ϕ = ϕper +ϕcl
where ϕper is a fluctuating periodic field and (c.c. is the complex conjugate)

ϕcl(z) = 2πρ

(
mτ̄ − m′

τ̄ − τ
z

)
+ c.c. (1.112)

is a solution of the equations of motion compatible with the compactification con-
dition. The action is then S = Sper + πρ2|mτ − m′|2/ Im τ . The model is thus de-
composed into sectors described by the integers m, m′. The partition function of a
sector is

Zm′,m(ρ, τ ) := Zboson(τ ) exp

(
−πρ2 |mτ − m′|2

Im τ

)
, (1.113)

where the free boson partition function Zboson was derived above in (1.84). Using
the techniques explained in the previous section, one finds by a straightforward cal-
culation that under a modular transformation

Zm′,m

(
ρ,

aτ + b

cτ + d

)
= Zam′+bm,cm′+dm(ρ, τ ). (1.114)

Consequently, there are two obvious modular invariants. The first one is simply
Z0,0 = Zboson. The other one is obtained by summing over all values of m,m′

Z(ρ, τ) := ρ
∑

m′,m
Zm′,m(ρ, τ )

= (qq̄)−1/24 1

P(q)P (q̄)

×
∑

n,m

exp

[
−2π i Re τ · mn − 2π Im τ

1

2

(
ρ2m2 + n2

ρ2

)]
, (1.115)

after having applied the Poisson formula (1.82) to m′.10 Since the partition function
is a generating function for the primary and secondary states in the model, one sets
q = exp(2π iτ). Then, using (1.76), the scaling dimension xn,m and the spin sn,m of
the primary operators On,m can be read off

xn,m = 1

2

(
ρ2m2 + n2

ρ2

)
, sn,m = nm. (1.116)

10Note that in this expression the factor (Im τ)−1/2 of (1.84) has disappeared.
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From these, one finds the conformal weights

Δn,m = 1

4

(
n

ρ
+ mρ

)2

, Δn,m = 1

4

(
n

ρ
− mρ

)2

(1.117)

such that the partition function takes the final form

Z(ρ, τ) = Z
(
ρ−1, τ

)= (qq̄)−1/24 1

P(q)P (q̄)

∞∑

n,m=−∞
qΔn,m q̄Δn,m . (1.118)

For ρ > 1, the quantum number n is said to describe electric fields, while
the quantum number m is said to describe magnetic fields. Clearly, all conformal
weights are ρ-dependent, but the spins are always integer.

The relationship with the XY model is as follows: the spin operator σ is identi-
fied with the conformal operator O±1,0 such that the exactly known critical exponent
η = 2x±1,0 = 1/4 is reproduced. This implies the choice ρ = 2. The corresponding
magnetic or vortex operator is then O0,±1, implying x0,±1 = 2. CFT therefore pro-
poses a satisfactory way to explain the temperature-dependent exponent η(T ) is the
low-temperature phase of the XY model, by a naturally realised marginal operator.
If these identifications are valid, the central charge of the XY model is cXY = 1.

1.9 From the Screened Coulomb Gas to Minimal Models

A modification of the free Coulomb gas, considered so far, is of interest. One
changes the boundary conditions on the free field ϕ by introducing an additional
vertex operator with charge −2α0 and conformal weight Δfree

−2α0
= 4α2

0 placed at
infinity. Then one considers the following modified correlators

〈〈
Vα1(z1) . . . Vαn(zn)

〉〉 := lim
R→∞R8α2

0
〈
Vα1(z1) . . . Vαn(zn)V−2α0(R)

〉
. (1.119)

The limit is well-defined because the correlation function on the r.h.s. scales as
R−8α2

0 for large R. For these modified correlators, the neutrality condition becomes
n∑

i=1

αi = 2α0. (1.120)

The non-vanishing two-point functions now read

〈〈
Vα(z)V2α0−α(0)

〉〉= 1

z2α(α−2α0)
(1.121)

and the conformal weight of the vertex operator Vα or V2α0−α becomes

Δα = Δ2α0−α = α(α − 2α0). (1.122)

It is non-trivial to show that this prescription is consistent, by establishing that the
primary operators Vα and V2α0−α are equivalent and have isomorphic Verma mod-
ules. The proof is beyond the scope of this book; we shall rather limit ourselves



1 A Short Introduction to Conformal Invariance 37

to list some interesting consequences and hope they sufficiently pique the reader’s
curiosity that he goes on and explores the rich literature on the subject for himself.

Due to the charge at infinity, the energy-momentum tensor must be modified,
such that the vertex operator Vα remains a primary operator. The modified energy-
momentum tensor is

T (z) = :JJ :(z) + 2α0∂zJ (z) = −1

4
:∂zϕ∂zϕ:(z) + iα0∂

2
z ϕ(z) (1.123)

with the same explicit normal-ordering prescription as before. The new term in the
definition of T should not surprise because it is the only other possible conserved
quantity with scaling dimension 2 available in our CFT. We remark that the same
energy-momentum tensor also arises in Liouville field-theory.

The same techniques as used before can be used to show that both Vα and V2α0−α

are primary operators (indeed, the constant in the extra term was chosen such that
this is true). Furthermore, T (z) satisfies the required OPE of an energy-momentum
tensor, with the central charge

c = 1 − 24α2
0 . (1.124)

This is the first remarkable result: the charge at infinity leads to a reduction of the
central charge c. The second remarkable result is the existence of non-trivial screen-
ing currents, with conformal weight unity,

S±(z) := Vα±(z) with α± := α0 ±
√

α2
0 + 1. (1.125)

These currents are used to create ‘screening charges’ which can screen the charge
at infinity, defined as Q± := (2π i)−1

∮
C

dzS±(z). They have a vanishing scaling
dimension, but their application leads to a sift in the charge, by an amount of α±.
Now, suppose that we restrict the subset of permissible vertex operators to the ones
whose charge is quantised according to

αr,s = 1

2
(1 − r)α+ + 1

2
(1 − s)α− (1.126)

with r, s ∈ N are positive integers. Recall the parametrisation c = 1 − 6/m(m + 1)

of the central charge. If we compute the conformal weight of Vr,s := Vαr,s in terms
of r , s, and m, one may recognise once more the Kac formula

Δαr,s = Δr,s = (r(m + 1) − sm)2 − 1

4m(m + 1)
. (1.127)

Therefore, the operator content of the unitary minimal models is contained in the
vertex operators of the screened Coulomb gas! This correspondence can be further
shown to lead to very useful integral representations for the n-point correlation func-
tions, by balancing the total charge of the vertex operators by intelligently chosen
screening operators. The details are beyond the scope of this introduction and we
refer to the literature.

Exercise 15 Write down the modes Ln of the modified energy-momentum tensor
in terms of the modes Jn of the conserved current. Find the central charge.
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Fig. 1.7 Semi-infinite
geometry and complex
coordinates za = ua + iva .
The physically inaccessible
lower half-plane is shaded
[26]

Exercise 16 Does the correspondence between the screened Coulomb gas and the
primary operators φr,s of minimal models also apply to the non-unitary case, when
c = 1 − 6(p − p′)/pp′?

1.10 Surface Critical Phenomena

Boundary conformal field-theory is the study of conformal field-theory in do-
mains with a boundary. Figure 1.7 illustrates the semi-infinite geometry which we
shall study, together with the complex notation z = u + iv to be used in 2D. We
begin with a short review on the thermodynamic behaviour near and at criticality
and restrict to 2D from the outset.

In general, physical observables such as the position-dependent magnetisation
profile m = m(v), will depend on the distance v to the surface, besides the usual
dependencies on the temperature T , an external magnetic field h and a surface mag-
netic field h1 which only acts right at the boundary. A more complete notation would
then be m = m(v;T ,h,h1). One conventionally distinguishes the following quanti-
ties

mb(T ,h,h1) = m(∞;T ,h,h1) = −∂g(T ,h,h1)

∂h
bulk magnetisation

ms(T ,h,h1) =
∫ ∞

0
dv
[
m(v) − mb

]= −∂gs(T ,h,h1)

∂h
excess magnetisation

m1(T ,h,h1) = m(0;T ,h,h1) = −∂gs(T ,h,h1)

∂h1
surface magnetisation

where gs is an excess contribution to the Gibbs potential density. Depending on the
surface couplings and the surface field, there are in 2D two distinct possibilities:
(i) the ordinary transition, when the surface magnetisation m1 < mb and in partic-
ular, m1(Tc,0,0) = 0 and (ii) the normal transition, when the surface magnetisa-
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tion m1 � mb �= 0, even at criticality.11 Turning to the description of the scaling in
terms of critical exponents, one has (with T ≤ Tc)

mb(T ,0,0) ∼ (Tc − T )β, ms(T ,0,0) ∼ (Tc − T )βs ,

m1(T ,0,0) ∼ (Tc − T )β1
(1.128)

where the exponent β of the bulk magnetisation is well-known and βs,β1 describe
different aspects of scaling near to the surface. Scaling relations between these ex-
ponents and the standard bulk exponents are derived from the scaling form of the
density of the excess Gibbs potential

gs

(
τbyτ , hbyh, h1b

y1
)= b−(d−1)gs(τ, h,h1) (1.129)

where the exponent d −1 reflects that the dimension of the surface is one less than in
the bulk. This scaling form already shows that there is only a single new independent
surface critical exponent. Indeed, it turns out that βs = β − ν is related to bulk
exponents, whereas β1 cannot be reduced to bulk exponents alone. Bulk universality
classes will therefore split into several surface universality classes which, among
other elements, will be distinguished by the value of β1.

Exercise 17 Define the excess specific heat and the exponent αs by Cs =
−∂2gs/∂τ 2 ∼ |τ |−αs . Derive the scaling relation αs = α + ν with the standard bulk
critical exponents α, ν.

A last important observable is the two-point correlator of the order parameter σ

G(z1, z2) = 〈
σ(u1, v1)σ (u2, v2)

〉∼
{ |z1 − z2|−η; if v1, v2 → ∞

|u1 − u2|−η‖ ; if v1, v2 → 0
(1.130)

which describes the cross-over between the two extreme cases (Fig. 1.7): bulk crit-
ical behaviour if the two points are far away from the surface and a new surface
critical behaviour very close to the surface, with the new critical exponent η‖. By
analogy with 2D bulk criticality, where η = 2xσ = 2β/ν, one also introduces a sur-
face scaling dimension xσ,s of the order parameter and then has

η‖ = 2xσ,s = 2β1

ν
. (1.131)

In contrast with the bulk, the surface scaling dimension of the energy density ε is
simply xε,s = 2.

Example In contrast to ferromagnets, for anti-ferromagnetic systems the surface
universality class can depend on the orientation of the surface with respect to the
crystal axes. The 2D situation, to which we restrict here, is illustrated in Fig. 1.8.

11We do not require in this book the much more rich phenomenology of surface critical behaviour
in d ≥ 3 dimensions, with its ‘extraordinary’ and ‘special’ transitions.
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Fig. 1.8 Surfaces (10) and
(11) for a square lattice, as
indicated by dotted and
dashed lines [26]

We shall illustrate this by considering an anti-ferromagnetic Ising model in ex-
ternal bulk and surface magnetic fields h and h1, respectively. The classical hamil-
tonian is

H = +J
∑

〈i,j〉
σiσj − h

∑

i

σi − h1

∑′

i,surf

σi, (1.132)

where the last sum extends over the sites on the surface only. In the direction per-
pendicular to the surface, periodic boundary conditions are assumed. The ground
state of H is anti-ferromagnetic, as indicated by black and white sites in Fig. 1.8.
Hence both bulk and surface magnetic fields are non-ordering. The physical order
parameter is here the staggered magnetisation. Two cases must be distinguished:

(a) if the surface is along the (11) crystal direction, the symmetry of the model
under exchange of the ‘black’ and ‘white’ sub-lattices is kept intact. The problem
can then be mapped back to the usual ferromagnetic Ising model and one expects
ordinary surface critical behaviour, with η‖ = 1.

(b) On the other hand, if the surface is along the (10) direction, the sub-lattice
symmetry is broken. The order parameter profile is symmetric and antisymmetric
around the centre of a strip with L layers for L odd and even, respectively. If h

or h1 are non-vanishing, this implies that the spins at the boundaries are fixed in a
relative ++ or +− orientation, for L odd or even, respectively. One thus expects a
normal surface transition, with η‖ = 4 in the ++ case and η‖ = 2 in the +− case.

These conclusion agree with the findings of BCFT, as we shall see in the next
section, as well as with numerical transfer matrix calculations [21].

1.11 Boundary Conformal Field-Theory

We begin with the projective conformal transformations in semi-infinite space. Of
the entire projective algebra sl(2,R) ⊕ sl(2,R), only the so-called ‘diagonal’ sub-
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algebra isomorphic to sl(2,R) which keeps the boundary line v = 0 invariant, are
admissible. The generators read12

�−1 + �̄−1 = −∂u

�0 + �̄0 = −u∂u − v∂v − x (1.133)

�1 + �̄1 = −(u2 − v2)∂u − 2uv∂v − 2xu.

We consider the two-point function G(z1, z2) = 〈φ1(z1)φ2(z2)〉 made from quasi-
primary scaling operators φ1,2(z) with scaling dimensions x1,2 and the coordinates
z = u + iv as defined in Fig. 1.7. Projective conformal invariance predicts

G =
(

v2

v1

)(x2−x1)/2

(v1v2)
−(x1+x2)/2Φ12

(
(u1 − u2)

2 + (v1 − v2)
2

v1v2

)
. (1.134)

Here, the scaling function Φ12 remains an arbitrary differentiable function. In con-
trast to the conformally invariant two-point function in the bulk, there is no con-
straint on the scaling dimensions x1 and x2.

Two extreme cases can be recognised: first, if both points are far from the bound-
ary, that is for v1,2 both large, the two-point function should only depend on the
distance r2 = (u1 − u2)

2 + (v1 − v2)
2. In the limit v1,2 → ∞, with r and v2/v1

both kept fixed, the explicit dependence on v1v2 can be eliminated by assuming the
behaviour Φ1,2(U) ∼ U−(x1+x2)/2 = U−η/2 for U → 0. Finally, the explicit depen-
dence on the orientation, via v2/v1, is eliminated by requiring that x1 = x2, if the
bulk correlator is a non-vanishing function of r .13 This reproduces the bulk result
G = g0δx1,x2 |r|−η , with η = 2xσ = 2x1. On the other hand, if both points are close
to the surface, one should rather look at the situation where |u1 − u2| → ∞ and
where now v1,2 are kept fixed at finite values. Then the limit behaviour Φ12(U) ∼
U−η‖/2 for U → ∞ gives the correct phenomenology G ∼ |u1 −u2|−η‖ , and where
the dependence on v1,2 enters into the scaling amplitude. Projective conformal in-
variance alone cannot predict neither the form of the function Φ12(U), nor fix the
exponent η‖.

Proof We outline the derivation of (1.134): from the projective conformal Ward
identities

2∑

i=1

[
∂

∂ui

]
G = 0

2∑

i=1

[
ui

∂

∂ui

+ vi

∂

∂vi

+ xi

]
G = 0

2∑

i=1

[(
u2

i − v2
i

) ∂

∂ui

+ 2uivi

∂

∂vi

+ 2xiui

]
G = 0

12One restricts here and in what follows to scaling operators which are scalars deep in the bulk,
with Δ = Δ = x/2.
13It remains perfectly possible to describe by (1.134) a two-point function such as 〈σε〉 with a
fixed non-vanishing magnetisation imposed at the surface and xσ �= xε , which of course vanishes
in the bulk.
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one has G = G(u,v1, v2) with u = u1 − u2 and the two remaining conditions

u
∂G

∂u
+ v1

∂G

∂v1
+ v2

∂G

∂v2
+ (x1 + x2)G = 0

(
v2

2 − v2
1

)∂G

∂u
+ uv1

∂G

∂v1
− uv2

∂G

∂v2
+ u(x1 − x2)G = 0.

Now, change variables to a = u2/(v1v2) and b = v1/v2 and let G(u,v1, v2) =
v

−x1
1 v

−x2
2 Φ(a,b). Then the function Φ = Φ(a,b) automatically satisfies the first

of these, while the second one gives
[
− ∂

∂a
+ b2

b2 − 1

∂

∂b

]
Φ(a,b) = 0

and since a solution of this last equation is a + b + b−1 − 2, we arrive at (1.134). �

An important question in a field-theory with boundaries is how to impose consis-
tent boundary conditions. In 2D CFT, a natural requirement is that the off-diagonal
component Tuv of the energy-momentum tensor should vanish, which intuitively
means that there is no momentum flow across the boundary. For simplicity, one
takes the domain to be the upper complex half-plane such that T (z) = T̄ (z̄) when
z is on the boundary, that is the real axis. Going again over the derivation of the
conformal Ward identities Eqs. (1.32) and (1.35), one now has

〈
T (z)φ1

(
z1, z

′
1

)
. . . φn

(
zn, z

′
n

)〉

=
n∑

j=1

(
Δj

(z − zj )2
+ 1

z − zj

∂

∂zj

+ Δj

(z̄ − z′
j )

2
+ 1

z̄ − z′
j

∂

∂z′
j

)

× 〈
φ1
(
z1, z

′
1

)
. . . φn

(
zn, z

′
n

)〉
(1.135)

where the analytical continuation T (z) = T̄ (z̄) for Im z < 0 is used and where the
points z′

j are the mirror images of the points zj in the upper half-plane, reflected by
the boundary, see Fig. 1.9, which also indicates the integration contours to be used.
Consequently, the calculation of a two-point function in semi-infinite space reduces
to the computation of a four-point function in the bulk.

Exercise 18 The conformal transformation w = L
π

ln z maps the upper complex
half-plane Im z ≥ 0 to an infinitely long strip of width L and with free boundary
conditions.

(i) Show that the correlation length measured in the strip, at criticality, from the
primary correlator 〈φ(w1)φ(w2)〉 ∼ exp[−Re(w1 − w2)/ξ ], has the finite-size
scaling form ξ = L/(πxs), where xs is the surface scaling dimension of the
primary operator φ.

(ii) The density of the Gibbs potential on the strip has at criticality the form g =
g0 + g1L

−1 + g2L
−2 + . . .. The bulk and surface contributions g0,1 are non-

universal. The universal amplitude g2 is determined from the scaling of the
excess Gibbs potential gs . Show that g2 = −πc/24.
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Fig. 1.9 Contours for the
conformal Ward identity with
a free surface [26]

These results provide efficient algorithms for the calculation of xs and c. Even
better numerical efficiency can be achieved, however, if one uses a Schwarz-
Christoffel transformation to conformally map the upper half-plane onto a rectan-
gle with known aspect ratio and free boundary conditions [18].

Exercise 19 In semi-infinite space, profiles of scaling operators 〈φ(z)〉 can be stud-
ied. If φ is quasi-primary, derive the profile 〈φ(v)〉 = φ0v

−x , where x is the bulk
scaling dimension of φ. If φ is primary, show further that in an infinitely long strip
of finite width L and with free boundary conditions, the profile is

〈
φ(v)

〉= φ0

[(
L

π

)
sin

(
πv

L

)]−x

,

where φ0 is a normalisation constant.

Because of the analytic continuation to the lower half-plane applied to the
energy-momentum tensor, there is only a single independent Virasoro algebra. Go-
ing again over the derivation of the quantum hamiltonian in (1.60), the conformal
transformation w = L

π
ln z from the upper half-plane to the open strip of width L

leads to

H = 1

π

∫ L

0
dv T (w) = π

L
L0 − πc

24

1

L
. (1.136)

In what follows, a special feature of 2D boundary CFT will become important: it
is possible to specify different boundary conditions on the positive and negative parts
of the real axis, without modifying the essential structure of conformal field-theory.
It can be shown that correlation functions behave as if an additional scaling operator,
called ‘boundary condition changing operator’ (BCC operator), had been inserted
at the origin (even if this is not a conventionally local operator). In Fig. 1.10, the up-
per half-plane with two distinct boundary conditions, labelled a and b is indicated,
and the dot symbolises the boundary condition changing operator. This geometry
can be conformally mapped onto an annulus, which may also be formed from a
rectangle of width L and of height δ, and with the top and bottom edges identified,
see Fig. 1.10. In the case of infinite height, that conformal transformation will be the
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Fig. 1.10 Conformal
mapping from the
semi-infinite space, with two
distinct boundary conditions
labelled a and b, to the
annulus

usual one, viz. w = 1
π

ln z, such that the quantum hamiltonian H = Hab which may
also be viewed as the generator of translations along the strip, is given by (1.136).

Similarly, for the annulus of unit width L = 1, where one sets q = e−πδ , one has
the partition function

Zab(δ) = tr e−δHab = trqL0−πc/24 =
∑

Δ

nab(Δ)χ(Δ, c) (1.137)

which, analogously to the periodic case treated before, can be decomposed into
a sum of characters χ(Δ,c). Here, the positive integers nab(Δ) give the operator
contents with the boundary conditions ab, such that the lowest admissible value of
Δ such that nab(Δ) > 0 gives the conformal weight of the BCC operator. The other
admissible values of Δ give the conformal weight of those primary operators which
make up the partition function.

On the other hand, the annulus partition function, up to an overall rescaling, can
be interpreted as the path integral of a conformal field-theory on a circle of unit
circumference, for an imaginary time 1/δ. Then the partition function becomes a
matrix elements between the boundary states 〈a| and |b〉:

Zab(δ) = 〈a|e−H/δ|b〉 (1.138)

but where now the quantum hamiltonian is given by (1.60) and the boundary states
are taken from the Verma module V . What are the allowed boundary states and
which are the values of nab(Δ)?

We only present but the most brief of an outline and refer to later chapters in this
volume and the literature for details. A first condition arise from the requirement of
a vanishing momentum flux across the boundary, T (z) = T̄ (z̄) for z real. Inserting
the mode expansion and transforming onto the cylinder geometry, it can be shown
that for any boundary state |B〉 one must have

Ln|B〉 = L̄−n|B〉 (1.139)

and furthermore, because of the decomposition of the Verman module V , this con-
dition must hold in each subspace VΔB

⊕ VΔB
. For example, taking n = 0, means

that boundary states must be scalar, ΔB = ΔB .
It turns out that these constraints on the admissible boundary states (called

Ishibashi states) can be fully solved, and in a beautiful way. This holds true at
least for the so-called diagonal models, where in the Verma module decomposition
Eq. (1.73) nΔ,Δ = δΔ,Δ, but also for all non-diagonal minimal models. Several im-
portant technical assumptions have to be made at this point, which we skip. We
introduce a slightly modified notation. The boundary condition a, which we have
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already seen to be characterised by a scalar boundary state, will be referred to by
their conformal weight Δa = Δa . Then, we re-write the multiplicity in the partition
function Eq. (1.137) as nab(Δ) = nΔ

Δa,Δb
. Recall from the section on modular in-

variance (see p. 23) the fusion algebras, with the fusion coefficients re-written as
Nc

ab = N
Δc

Δa,Δb
. Now, Cardy’s formula gives the operator content of 2D boundary

conformal field-theories:

nΔ
Δa,Δb

= NΔ
Δa,Δb

. (1.140)

Example We illustrate this profound relation in the 2D Ising universality class. Be-
fore, the identifications 1 = χ1,1 = (0), σ = χ1,2 = ( 1

16 ) and ε = χ2,1 = ( 1
2 ) have

been established, where we now suppress the second conformal weight, since all
the primary operators are scalars. We shall need the following fusion rules

σ � σ =1 + ε, 1 � 1= ε � ε = 1,

ε � 1= ε, σ � 1=σ � ε = σ.
(1.141)

In the 2D Ising model, one may define the following boundary conditions: (i) free
(F), where the order parameter vanishes at the boundary, (ii) fixed (+ or −), where
the local order parameter is constrained to σ |boundary = ±1. On an infinitely long
strip of finite width L, one then has the following combinations:

(a) free boundary conditions on both sides. Then the partition function is denoted
by Z(F) = Z(FF);

(b) fixed boundary conditions, with the spins fixed either in the same way or in the
opposite way, which gives the partition functions Z(++) = Z(−−) and Z(+−) =
Z(−+);

(c) mixed boundary conditions, which are free on one side and fixed on the other,
with the partition functions Z(M) := Z(F+) = Z(F−) = Z(+F) = Z(−F).

The correspondence between the primary operators and the boundary conditions
is listed in the following table:

primary boundary condition

σ free (F )

1 fixed (+)

ε fixed (−)

but the correspondence between the operators 1, ε and the boundary conditions
(+), (−) can also be permuted.

With this correspondence, and the explicit fusion rules (1.141), Cardy’s formula
then yields the following predictions for the operator content:
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Z(F) =χ1,1 + χ2,1 = (0) +
(

1

2

)
ordinary transition, η‖ = 1

Z(++) = Z(−−) =χ1,1 = (0) normal transition, η‖ = 4

Z(+−) = Z(−+) =χ2,1 =
(

1

2

)
normal transition, η‖ = 2

Z(M) =χ1,2 =
(

1

16

)
mixed transition, η‖ = 2

(1.142)

in full agreement either with an exact solution of the 2D Ising model or else numer-
ical studies. We also indicate the kind of the surface transition and list the resulting
values of η‖ = 2xσ,s, where the surface exponent can be read off from the smallest
gap E1 − E0 = π

L
xσ,s of the quantum hamiltonian Hab on the strip. Alternatively,

xσ,s can be read off from the Rocha-Caridi formulæ.

Example Infinitely long defect line(s) in the 2D Ising model play a special rôle,
since such perturbations are marginal and the critical exponents near to the defect
line(s) depend continuously on the defect strengths κi . Equivalent situations are
found when several sectors of Ising models are coupled at their respective bound-
aries. This goes beyond the situation described so far. While the semi-infinite Ising
model is a minimal model with a finite number of primary operators, the Ising model
with defect lines contains an infinite number of primary states! It can be shown that
the partition function, in the case of a single defect line, can be expressed in terms of
the characters of a ‘shifted’ u(1)-Kac-Moody algebra [3, 27], which also takes into
the account the continuous shift of the scaling dimensions with the defect strengths.
We merely mention that this situation can also be included into the framework of
boundary conformal field-theory, with relations to so-called ‘orbifold compactifica-
tions’ and related to the Ashkin-Teller model [33]. Physically, such defects lines can
conviently realised when studying the corner magnetisation at the surface transition
in 3D Ising models with enhanced surface couplings [36] or at the border line of
two distinct Ising models, even with different spins [31].

1.12 Notes and References

Two-dimensional conformal invariance started with the breakthrough article by
Belavin, Polyakov and Zamolodchikov [5]. Since then, many excellent reviews and
books on conformal invariance have been published. Presently, the most compre-
hensive of them certainly is the superb book written by di Francesco, Matthieu and
Sénéchal [19].

We have assumed that the reader is familiar with the basic notions of phase tran-
sitions and critical phenomena, at thermal equilibrium. Taking off almost from the
very beginning, the nicely written book [40] is an excellent starting point for the
novice. A masterly and lucid introduction to the main ideas of scaling, universal-
ity and the renormalisation-group, and much more, can be found in a set of superb
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lectures [23]. A magnificent modern summary of the scaling description of critical
phenomena, as they occur in a huge variety of different settings, and leading up to
conformal invariance, is given in [15]. See [29] for a brief introduction to critical
phenomena with particular attention to the non-universal metric factors, along with
long lists of critical exponents. In [26], the reader can find, besides an introduction
to the elements of conformal invariance, many experimental and numerical illustra-
tions, including long lists of measured critical exponents, of 2D critical phenomena
and various explicit tests of many aspects of 2D conformal invariance. For reviews
on surface critical phenomena, consult [20, 35]. Those interested in integrable sys-
tems will naturally start consulting [4], or [24].

Much of what we know about conformal invariance, we have learned on one hand
from the many important and often so crystal-clear articles and reviews written by
Cardy [11, 14, 17] and on the other hand from the beautiful lectures which achieved
their final form in [22, 30]. The lectures written up in [41] were a useful source
of inspiration. Readers interested in the mathematical aspects of conformal invari-
ance may consult [39]. A nice modern introduction, slightly oriented towards string
theory, is [6]. Some of the most simple elements of conformal invariance are pre-
sented in a very accessible manner in [25], for francophone readers. A nice classical
summary of non-renormalisation theorems in quantum field-theory is [7].

Boundary conformal field-theory arose largely in [10, 12]. The relationship to
fusion algebras and the Verlinde formula appears in [13]. For detailed reviews on
this, see [16] and [34]. The application of boundary conformal field theory to anti-
ferromagnetic Ising models is taken from [21].

For a reader curious about whether at least some ideas of conformal invariance
might have a fruitful bearing on dynamics and non-equilibrium phase transitions, we
suggest to consult [28], which looks at the dynamics of classical quenched systems.
Quantum quenches and their relationship with conformal invariance are introduced
in [8, 9].
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Chapter 2
A Short Introduction to Critical Interfaces in 2D

Michel Bauer

2.1 Introduction

The central goal of this chapter is to introduce stochastic Loewner evolution (SLE),
but with a detailed emphasis on its interplay with statistical mechanics and confor-
mal field-theory.

Stochastic Loewner evolutions describe growth processes, and as such they fall
in the more general category of growth phenomena. These are ubiquitous in the
real world at all scales, from crystals and plants to dunes and galaxies, and so on.
They can be addressed in many ways, by deterministic or probabilistic methods, in
discrete or continuous space and time. Understanding growth is usually a very dif-
ficult task. This is true even in two dimensions, the only case we mention in these
notes. Yet in two dimensions, the powerful tools of complex analysis allow to tame
the zoo of shapes. Indeed, many relevant growth processes involve the growth of
domains (i.e. contractile open subsets of the Riemann sphere). Riemann’s uniformi-
sation theorem describes domains in a canonical way by conformal maps, and then
growth of domains by Loewner chains. So at least the kinematic part is “easy” in
two dimensions. This, and more, is explained in details in Sect. 2.3. To avoid any
confusion, let us stress that being able to describe a growth process using tools from
complex analysis and conformal geometry does not mean that the growth process
itself is conformally invariant at all.

The mathematics in Sect. 2.2 are more down to earth. They involve mostly simple
combinatorics. We concentrate on two simple examples of random geometric curves
on the lattice, the exploration process and the loop-erased random walk. Both ex-
amples have been shown to have a continuum limit, moreover described by SLE.
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We explain how to make numerical simulations, and in particular how to estimate
fractal dimensions. We recall how both the exploration process and the loop-erased
random walk have a natural interpretation as interfaces in some (critical) statisti-
cal mechanics models called loop models. The exploration process leads easily to
percolation, while loop-erased random walks lead to a more intricate combinatorics
related to determinantal identities and symplectic fermions.

We also mention in passing another important but still very mysterious random
growth model, diffusion-limited aggregation (DLA), which is expected to have a
non-conformally invariant continuum limit. Simulations of DLA produce beauti-
ful shapes, as do many other growth models. The universality classes are still de-
bated, but DLA and its cousins, Laplacian Growth, the Hele-Shaw problem, dielec-
tric breakdown are all important in various applications, though we shall not touch
this subject in these notes.

Stochastic Loewner evolution is derived in Sect. 2.4, following Schramm’s orig-
inal argument. It’s validity rests on two properties: conformal invariance which can
be expected only in the continuum limit, and the domain Markov property, which
holds already on the lattice in many models (including the exploration process and
loop-erased random walks). The outcome if that conformally invariant measures on
curves with the domain Markov property are parameterised by a single arbitrary
positive number, named κ , which appears as the variance parameter of a Brownian
motion.

SLE is a simple but particularly interesting example of growth process for which
the growth is local and continuous so that the resulting set is a continuous curve,
or at least is closely related to a continuous curve. What makes stochastic Loewner
evolutions so important (at least in the author’s view) is first that they are among
the very few growth processes that can be studied analytically in great detail, and
second that they have solved a problem that remained opened for two decades, the
description of conformally invariant extended objects. For a physicist working in
statistical mechanics, in particular for a conformal field-theorist, a rather startling
feature of SLE is that is shows the hidden Markovian character of critical interfaces,
which is far from obvious a priori. At the technical level, another striking feature
of SLE is that in has turned many questions concerning interfaces that seemed just
out of reach into exercises in stochastic calculus. Of course this simplicity is one of
the blueprints of important discoveries. To give one illustration, we show how the
locality property of the exploration process leaves κ = 6 as the sole possibility to
describe its continuum limit.

The last section, Sect. 2.5 is devoted to the basics of the relationships between
SLE and conformal field-theory (CFT). It is reassuring that the two subjects are
closely interwoven. The basic statement is that conformal field-theory and stochas-
tic Loewner evolutions are coupled in such away that CFT correlators are SLE mar-
tingales. The origin of this relationship is basically an instance of double counting,
as we show in the last subsection. The consequence is that the Itô generator of SLE
seen as a diffusion has to coincide with a particular singular vector differential oper-
ator. This allows to retrieve easily the relation between the central charge c (a CFT
characteristic) and the SLE parameter κ :

2κc = (6 − κ)(3κ − 8). (2.1)



2 A Short Introduction to Critical Interfaces in 2D 53

A more general consequence is that SLE probabilities have all the axiomatic prop-
erties of CFT correlators involving a special boundary-changing operator of dimen-
sion Δ = (6 − κ)/2κ inserted at the origin of the interface. We illustrate this by
computing the simplest hitting probability either via stochastic calculus or via oper-
ator product methods. We also emphasise the importance of CFT partition functions
to describe variants of SLE involving conditioning for instance, and more generally
as a guiding principle to study SLE. Of course, physicists understand the relevance
of partition functions because of their training in statistical mechanics, but this view
is also shared by mathematicians now.

In the last paragraph, we wrote “SLE probabilities have all the axiomatic proper-
ties of CFT correlators” which may seem quite a twisted statement. Writing simply
“SLE probabilities are CFT correlators” is OK with a nasty drawback: the CFTs of
SLEs are badly behaved ones. Thirty years of CFT have make physicists comfort-
able with rational CFT, or unitary CFTs. The CFTs of SLEs are yet to be precisely
defined, but they are definitely neither rational nor unitary. They are probably clos-
est to certain logarithmic CFT. The operator content, the fusion algebra, etc, are
unknown at the moment. The only correlators that are under control via general
conformal invariance arguments are those with at most 4 boundary operators (or
1 bulk and 2 boundary operators). This may seem very negative. However, SLE is
a perfectly well-defined mathematical object, and one can hope that this will give
enough control to learn some general lessons on what CFT is about, outside the
reassuring but limited regions of unitarity and/or minimality. There has been some
recent progress in this direction.

2.2 Discrete Models

Random curves have focused the interest of physicists and mathematicians for
decades. The simplest and perhaps oldest example is the symmetric random walk
on the lattice or its continuous counterpart, Brownian motion. For dimensions ≤ 4
it is not a simple curve. On the other hand, polymers have a strong tendency to
be self-avoiding, and they can be modelled crudely as simple random walks with a
statistical weight giving fugacity μ to each monomer. But there is a wealth of inter-
esting models of simple random walks. Among them are interfaces in 2D systems.
Under certain circumstances, such systems are expected to have a continuum limit.

Recently a lot of progress has been achieved. Notably, a classification of random
curves in the continuum with certain special properties has been obtained. It has
received the name “Stochastic Loewner Evolutions” (SLE), and it is the subject of
Sect. 2.4. It is hard to over-estimate the impact of SLE: it has given tools to solve
formidable problems by routine computations, but moreover it has made it possible
to prove that families of random simple walks and interfaces have a continuum limit.

The purpose of the examples that follow is to illustrate the connection between
geometrical random curves and statistical mechanics. It turns out that partition func-
tions under various disguises play a huge role in the study of SLE.



54 M. Bauer

Fig. 2.1 Left panel: a smooth domain. Middle panel: a non-simply connected region is not a
domain. Right panel: a non-smooth domain, whose topological boundary is not a simple curve

2.2.1 Discrete Domains

In what follows, a domain D is a non-empty open simply connected (i.e. no holes)
strict subset of the complex plane C. With this generality, domains and their topo-
logical boundaries can be quite complicated, as exemplified by the domain on the
right in Fig. 2.1. There are mathematical theories to define a better notion of bound-
ary suitable for our purposes. This can be achieved via the theory of “prime ends” or
via the so-called Poisson/Martin boundaries that parameterise harmonic functions
i.e. solutions h of the Laplace equation Δrh = 0, but we shall say only a few words
about that in Sect. 2.3.1.

The complex plane admits regular tilings by hexagons, by triangles or by squares.
The following definitions are given for hexagonal tilings, but they can easily be
adapted for tilings by triangles and squares.

All hexagonal tilings can be obtained from one of them by similarities (in com-
plex notation z �→ λz + ρ). Fix such a tiling T , for instance one whose hexagons
have unit area. The plane is the disjoint union of vertices, open edges and open faces
of T : every point in the plane is either a vertex, or an interior point of an edge, or
an interior point of a face.

A hexagonal domain D with reference T is a domain in the usual sense as
defined above which is the union of vertices, open edges and open faces of T .

This definition accommodates “smooth” domains like the left one in Fig. 2.2
whose boundary is a simple curve but also more irregular shapes like the middle
one in Fig. 2.2 whose boundary is not a simple curve. If ε > 0 is much smaller than
the size of an edge of T , the points in the hexagonal domain D whose distance to
the complement of D is ε form a simple curve, but the limit ε → 0+ is singular.
The knowledge of the side from which a boundary point is approached is naively
lost in the limit, but one can decide to keep track of it and this is the most useful
definition of boundary in this context. For hexagonal domains we have thus a notion
of boundary which makes it a curve even for a non-smooth domain. That such a
boundary can also be defined for general domains is a non-trivial matter.

In these notes, an admissible boundary condition is a couple of distinct vertices
(a, b) of T , a, b /∈D such that there is (at least) a path from a to b in D. A path (or
simple walk) in D is a sequence s1, . . . , s2n+1, where a = s1, b = s2n+1, the s2m+1,
1 ≤ m < n, (if any) are distinct vertices of T in D and the s2m, 1 ≤ m < n, are
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Fig. 2.2 Left panel: a “smooth” hexagonal domain. Middle panel: a non-smooth hexagonal do-
main. Right panel: an admissible boundary condition

distinct edges of T in D with boundary {s2m−1, s2m+1}. This is illustrated on the
left of Fig. 2.2. Any such path splits D into a left and a right piece. The term “simple
walk” is also used to mean a “path”.

If s1, . . . , s2n+1 is a path from a to b in D and 0 ≤ m < n, the set D′ obtained by
removing from D the sets sl , 1 < l ≤ s2m+1 is still a domain, and (s2m+1, b) is an
admissible boundary condition for D′.

Our main interest in the next subsections will be in measures on paths from a to
b in D when D is a domain and (a, b) an admissible boundary condition.

Hexagonal domains have a special property which is crucial for what follows.
Suppose (D, a, b) is a hexagonal domain with admissible boundary condition. The
right (resp. left) hexagons are by definition those which are on the right (resp. left) of
every path from a to b in D. Left and right hexagons are called boundary hexagons.
The other hexagons of D are called inner hexagons.1 Colour the left hexagons in
black (say) and the right hexagons in white as in Fig. 2.3 on the left. If one colours
the inner hexagons arbitrarily in black or white, then there is a single path from a

to b in D such that the hexagon on the left (resp. right) of any of its edges is black
(resp. white). This is illustrated in Fig. 2.3 on the right. This path can be defined
recursively because a is on the boundary of at least one left and at least one right
hexagon: as a is not in D, in any colouring there is exactly one edge in D with a

on its boundary and bounding two hexagons of different colours. Start the path with
this edge and go on.

If D is domain with a smooth boundary, it is easy to approximate it with high
precision by hexagonal domains with reference tiling λT + ρ by taking λ small
enough. A general domain D may have a very complicated boundary, and approxi-
mations by hexagonal domains is not so obvious. Despite their importance, we shall
remain silent on these subtleties. Also, it is useful for the general theory to have a
quantitative notion of how close such an approximation is to the original domain and
to have quantitative notion of convergence of approximations (when λ gets smaller
and smaller) that guaranties that some phenomena on discrete domains (for instance
some properties of certain statistical mechanics models) have an interpretation in
the limit. We shall not give a formal definition of convergence, but simply mention
that it exists.

1Note that being a boundary or an inner hexagon depends on (a, b).
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Fig. 2.3 Left panel: the boundary of a hexagonal lattice domain with boundary conditions. Right
panel: the interface associated to a configuration

All the examples of interfaces we shall deal with in these notes can be defined
on arbitrary hexagonal domains with admissible boundary condition, though some-
times we shall use square domains. Certain geometrical examples will define di-
rectly a law for the interface or a probabilistic algorithm to construct samples. Ex-
amples from statistical mechanics will give a weight for each colouring of the inner
hexagons, and the law for the interface can be derived (at least in principle) from this
more fundamental weight. The model of interface can depend on some parameters,
called collectively p (for instance, temperature can be one of those).

Consider an interface model with parameter family p on discrete domains. Fix a
domain with two marked boundary points, (D, a, b) and suppose it can be approx-
imated by a “convergent” sequence of discrete domains with boundary conditions
(Dn, an, bn) whose reference tiling λnT has scale λn → 0+. A continuum limit ex-
ists when there is a (domain independent) function p(λ) such that the distribution
of interfaces in (Dn, an, bn) with parameters p(λn) converges to some limit. The
limiting value p(0) is called the critical value and is denoted by pc. The choice
p(λ) = pc leads to a scale-invariant theory.

A map f : D → D
′ between two domains sending marked boundary points to

marked boundary points (i.e. f (a) = a′ and f (b) = b′) is said to be conformal if it
preserves angles. Riemann’s theorem, to be explained in more detail in Sect. 2.3.1
asserts the existence of such maps. One can then ask, for a given interface model,
whether the distribution of interfaces in (D, a, b) and in (D′, a′, b′) are conformally
equivalent. This can be checked numerically on good lattice approximations of these
domains.

In two dimensions, scale-invariance plus locality is often enough to ensure con-
formal invariance. Thus the limiting theory of a discrete model at p = pc is a good
candidate for conformal invariance. More generally, there is often a threshold func-
tion ps(λ) such that if p(λ) − pc = o(ps(λ) − pc) the limiting continuum theory
is the same as the critical theory, if p(λ) − pc ∼ ps(λ) − pc a limiting continuum
theory exist but is not scale-invariant, and if ps(λ) − pc = o(p(λ) − pc) the limit-
ing theory either does not exist or is trivial in some sense (concentrated on a single
curve for instance). It is clear that only the small-λ behaviour of ps matters and
commonly ps(λ) − pc can be taken to be simply a power of λ. The exponent is one
of the critical exponents of the model.
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Fig. 2.4 The exploration process

2.2.2 The Exploration Process and Percolation

2.2.2.1 Definition of the Exploration Process

Let (D, a, b) be a hexagonal domain with admissible boundary condition. Colour
the left hexagons in black (say) and the right hexagons in white. If a is incident to
no inner hexagon of D, all paths from a to b in D start with the same edge. Else, a is
incident to exactly one inner hexagon of D. Colour it black or white using a biased
coin (say black has probability p and white 1 − p), and make a step along the edge
of D adjacent at a whose adjacent faces have different colours. Then remove from D

the edge corresponding to the first step and its other end point, call it ȧ to get a new
domain Ḋ. If ȧ = b stop. Else (Ḋ, ȧ, b) is a new hexagonal domain with admissible
boundary condition and one can iterate as shown in Fig. 2.4. Each choice of colour
is made independently of the preceding ones but with the same bias. This random
process is called the exploration process, and by construction it results in a simple
path from a to b.

The fact that at some times the next step can be decided without tossing (for
example, in Fig. 2.4, for the transition from the second picture to the third one, the
choice of Colour for one hexagon is enough to fix two steps of the exploration path)
results in a subtle interaction between the abstract independent coin tossings and
their intricate effect on the geometry of the path.

There is exactly one coin toss for each inner face of D touching an edge of the
path: this toss takes place the first time the inner face is touched by the tip of the
path. In the rest of the process, this face becomes a boundary hexagon. But the path
can have more than one edge along it.

The exploration process has a very important property: locality. It means that if
(D, a, b) and (D′, a, b), D′ ⊂ D are two hexagonal domains with the same admissi-
ble boundary condition (a, b), the distributions of the exploration path in D and in
D

′ coincide up to the first time the exploration path touches a boundary hexagon of
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Fig. 2.5 Samples of the exploration process for increasing sizes

D
′ which is an inner hexagon of D. This notion of locality should not be confused

with the notion of locality in quantum field-theory.
By symmetry, if there is a single value of p for which the theory is critical, it

has to be pc = 1/2 and the numerics confirms this intuition. Figure 2.5 shows a few
samples of the symmetric exploration process. They join the middle horizontal sides
of similar rectangles of increasing size. The pseudo-random sequence is the same
for the four samples.

Even for small samples, the exploration process makes many twists and turns.
By construction, the interface is a simple curve, but with the resolution of the figure,
the exploration process for large samples does not look like a simple curve at all!

To estimate the (Hausdorff, fractal) dimension of the symmetric exploration pro-
cess, one can generate samples in similar rectangular domains of different sizes and
made the statistics of the number of steps S of the interface as a function of the size
L of the rectangle domain. One observes that S ∝ Lδ and a modest numerical effort
(a few hour of CPU) leads to δ = 1.75 ± .01. To get an idea of how small the finite
size corrections are, observe Fig. 2.6.

The exploration process is build by applying local rules involving only a few
nearby sites, and we could wave our hands to argue that its scale-invariance (for
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Fig. 2.6 The logarithm of the
average length of the
exploration path versus the
logarithm of the domain size.
The numerical results are the
circles, the straight line is the
linear regression, the error
bars are shown

p = pc = 1/2) should imply its conformal invariance in the continuum limit. For-
tunately, hand-waving is not needed because the exploration process (on hexagonal
domains) is one which has been rigorously proved to have a conformally invari-
ant distribution in the continuum limit, the fractal dimension being exactly 7/4. As
suggested by numerical simulations, the continuum limit does not describe simple
curves but curves with a dense set of double points, and in fact the—to be defined
later—SLE6 process describes not only the growth of the exploration path but also
the growth of the exploration hull, which is the complement of the set of points
that can be joined to the end point by a continuous path that does not intersect the
exploration path. As we shall explain in detail in Sect. 2.4.5, among SLEκ ’s, SLE6
is the only one that satisfies locality, so what is really to prove in this case is confor-
mal invariance in the continuum limit (a non-trivial task), and the value of κ is for
free.

2.2.2.2 Relation to Percolation and Coupling

The exploration process has been presented as a growth process, but in fact it is re-
lated to statistical mechanics in a simple way. Indeed, suppose that once the explo-
ration sample has been constructed one tosses repeatedly (independently) the same
coin to Colour also the hexagons that have not been coloured during the construc-
tion of the path. One gets a configuration in which all hexagons have been coloured
independently, and from which the exploration path can be reconstructed has the
sole curve joining the marked points with boarding hexagons all black one the left
side and white on the right side. So one could also construct exploration samples
by colouring all the hexagons independently at once and then drawing the sepa-
rating curve. To summarise, the exploration path is the interface for the statistical
mechanics of percolation.

Of course this approach is a poor idea for numerical simulations of the explo-
ration process for a fixed p, because many hexagons are coloured for no use. But
it has several advantages. First, it shows plainly that the law for the exploration
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process is reversible (i.e. the choice of which of the two marked is used to start the
exploration path is irrelevant). Second, percolation can be studied with other bound-
ary conditions. Third, it makes it possible to use the powerful probabilistic tool of
coupling, to which we turn now.

It happens frequently that on some measure space (A,F ) one has to deal with
a family of probability laws Pu where u is some parameter. Quite often the pa-
rameter u takes only two values, but this is not mandatory. In some favourable
circumstances, one can find another probability space (E,G ,μ) and a family of
measurable maps fu : E → A such that the image measure of μ by fu is Pu: if B

is a measurable subset of A (i.e. B ∈ F ) then f −1
u (B) is a measurable subset of E

(i.e. f −1
u (B) ∈ G ) and Pu(B) = μ(f −1

u (B)). Thus we can fix a configuration in E

and by changing u see a “movie” of configurations in A. This is known as coupling.
Abstractly, couplings always exist, but these general constructions are of little or

no use. A coupling useful to tackle a given situation does not always exist, and even
it does, it may take a good amount of creative skills to discover it.

However, in the case of percolation, it is easy to find a useful coupling. Let the
parameter u vary in [0,1]. If H is the set of inner hexagons (the ones whose colours
are not fixed by boundary conditions) of some finite hexagonal domain, set A =
{b,w}H with F = P(A) (all subsets of A are measurable), and set E = [0,1]H
with μ the product Lebesgue measure. So A is the set of assignments of a colour,
b(lack) or w(hite), to each inner hexagon, and E is the set of assignments of a
real number ∈ [0,1]H to each inner hexagon. A configuration in A can be seen
equivalently as a map from H to {b,w}, or as a partition of H in black and white. If
x ∈ [0,1], set fu(x) = b if u < x and fu(x) = w if u ≥ x. Use the product structure
of A and E to define fu : E → A so that an hexagon h is white if and only if its
assigned value is ≥ u. Obviously the image measure of μ by fu colours the inner
hexagons independently, each being black with probability 1 − u and white with
probability u.

In such a setting, a useful tool is Russo’s formula. Let us derive it abstractly
and then interpret it. Suppose we partition A in two subsets A = B ∪ W in such a
way that being in W is a so-called increasing property: if γ ∈ W and if γ ′ ∈ A

is such that all hexagons which are white in the configuration γ are also white in
the configuration γ ′ then γ ′ ∈ W . We order {b,w} by saying that w > b and use
this to define a partial order: γ ′ ≥ γ if and only if all hexagons which are white
in the configuration γ are also white in the configuration γ ′. Viewing γ and γ ′ as
maps from H to {b,w}, this says that if γ ∈ W and γ ′ ≥ γ then γ ′ ∈ W . Then
it is intuitively clear, and coupling makes it obvious, that Pu(W) is an increasing
function of u. If γ ∈ A is a configuration, call a hexagon h pivotal for A = B ∪W in
the configuration γ either if γ ∈ B , h is coloured in black and changing it into white
yields a configuration in W or if γ ∈ W , h is coloured in white and changing it into
black yields a configuration in B . In the first case, we say that h is pivotal in γ to
enter W and in the second case that h is pivotal in γ to enter B . In each configuration
γ ∈ A there is a certain number (possibly 0) of pivotal hexagons Π(γ ), and Π is
thus a random variable on A. Russo’s formula states that

d

du
Pu(W) = Eu(Π), (2.2)
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i.e. that the derivative of Pu(W) is the expected number of pivotal points for the
probability Pu.

Proof The proof is easy. We shall prove a slightly more refined identity, namely that
if ΠW(γ ) is the number of hexagons in γ pivotal to enter W then (1−u) d

du
Pu(W) =

Eu(ΠW). By symmetry, if ΠB(γ ) is the number of hexagons in γ pivotal to enter
B then u d

du
Pu(W) = Eu(ΠB). As Π = ΠW + ΠB , the sum of these two equalities

gives Russo’s formula. Suppose 0 ≤ u < v ≤ 1. By definition Pv(W) − Pu(W) =
μ(fv(X) ∈ W) − μ(fu(X) ∈ W) and by the increasing property of W this is
μ(fv(X) ∈ W and fu(X) /∈ W). We can split this as a double sum to get

Pv(W) − Pu(W) =
∑

β∈B

∑

ω∈W

μ
(
fv(X) = ω and fu(X) = β

)
.

Note that the summand can be non-zero only if β < ω i.e. if one can go from β to ω

by turning some black hexagons to white ones because this is what happens to f.(X)

for a fixed X by tuning the parameter from u to v. For a given X the hexagons h that
change colour are those for which X(h) ∈ ]u,v], so in the above double sum only
the pairs (β,ω) which disagree on a single hexagon can contribute to first order in
v − u.

For instance we can sum first over β’s to get

Pv(W) − Pu(W)

=
∑

β∈B

∑

hpivotal inβ

μ
(
fu(X) = β and X(h) ∈ ]u,v]) + O

(
(v − u)2).

But by the definition of μ and fu,

μ
(
fu(X) = β and X(h) ∈ ]u,v]) = μ

(
fu(X) = β

)v − u

1 − u
= Pu(β)

v − u

1 − u
.

In consequence,

Pv(W) − Pu(W) = v − u

1 − u

∑

β∈B

Pu(β)#{pivotal points in β} + O
(
(v − u)2).

The sum is just the expected number of pivotal points to enter W for Pu, and taking
the limit leads to the announced result:

(1 − u)
d

du
Pu(W) = Eu(ΠW).

Had we decided to sum first over ω’s, we would have obtained

u
d

du
Pu(W) = Eu(ΠB). �

Now that we have proved Russo’s formula abstractly, let us apply it to a concrete
decomposition of A relevant for percolation. Take a domain and split its boundary
into four segments, such that the colours of the hexagons are fixed on each segment
but alternate from one segment to the next as in Fig. 2.7. Then a simple topological
argument shows that in any configuration either there is a black cluster connecting
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Fig. 2.7 Left panel: a sample of critical percolation with a black crossing and no pivotal point.
Right panel: a sample of critical percolation with a white crossing and several pivotal points. Find
these!

the two black boundary components, or there is a white cluster connecting the two
white boundary components. In the first case put the configuration in B and in the
second case put it in W . That being in W is an increasing property is clear. Pivotal
hexagons are the ones which change the colour of the connecting cluster, so they
have a impact on the long range properties of a configuration. Figure 2.7 shows two
samples.

Such pivotal points could be called “global pivotal points” because they are de-
fined with respect to global boundary conditions. However, in an arbitrary config-
uration of percolation one can look at windows of a certain size and define pivotal
points with respect to that window. Anyway, at u = pc = 1/2, the number of piv-
otal points can be shown to behave like (L/λ)3/4 where L is the linear size of the
system and λ is the scale of the tiling. So ps(λ) − 1/2 = λ3/4 is a good candidate
for the threshold function: by coupling, changing u from the critical value 1/2 to
1/2 + gλ3/4 just flips of order 1 pivotal points, and Russo’s formula indicates that
P1/2+gλ3/4(W)−P1/2(W) is a finite function of g in the continuum limit. The valid-
ity of this threshold function is in fact rigorously proved (only in some weak sense
at the moment, but progress is rapid).

At that point, an instructive subtlety enters the game. As physicists, we expect
that a continuum field-theory describing the vicinity of the critical point exists. This
theory will depend on a renormalised parameter that can be taken to be g or a cor-
relation length. We also expect that correlation functions (involving a finite number
of points) in this theory will depend smoothly on g. However, on can show in this
example that in the case of percolation, the probability measure on the interface,
which is even a more global observable, does not depend smoothly on g.

Before we consider percolation, which is already complicated, we take a glance
at a simpler case, 1D random walks. This will allow us to explain the intuitive
meaning of the smoothness statement.

Let λ be the lattice spacing, p be the probability to make a step to the right and
1 − p the probability to make a step to the left. Suppose we make n steps. So a
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walk starting at point x has its endpoint at x + Sn where Sn = λ(ε1 + . . . + εn). The
random variables ε1, . . . , εn are independent and take value 1 or −1 with probability
p or 1 − p respectively. It is clear that coupling can be used in this case and an
analysis analogous to percolation could be carried out. One way to do so would be
to consider an interval of length L containing the origin and take S0 = x ∈ [0,L].
Then P = P(p,λ, x,L), the probability that the first exit of ]0,L[ is at L, plays
the role of a crossing probability in percolation. The analysis is elementary but as
the outcome is well-known, we do not go into the details. The salient features are
that pc = 1/2 is the critical value, that the number n of steps to exit the interval is
∼ (L/λ)2 and that ps = 1/2 + λ is a threshold function.

For given p, the mean (expected value) of Sn, which measures the asymmetry
between steps to the right and steps to the left, is λn(2p − 1) and the fluctuation
(variance) of Sn is 2λ

√
np(1 − p). When the fluctuation is much smaller that the

mean, a look at a sample will be enough evidence to decide with overwhelming
confidence that it was not drawn with a symmetric distribution. However, if the
asymmetry and its fluctuations are of the same order, one cannot know for sure.
In the continuum limit, setting p = 1/2 + gλ and n ∼ (L/λ)2, we find that the
mean is ∼ L2g and that the fluctuation is ∼ L. Both these quantities are finite for
λ → 0+, so it is impossible to decide whether a sample long enough to exit the
interval was drawn with the symmetric distribution or not. A typical sample for the
symmetric distribution is also typical for the asymmetric continuum distribution.
Another way to check this statement is to look at a symmetric sample of n steps.
Its probability is (1/2)n. Now for the asymmetric distribution, the same sample
has probability (p(1 − p))n/2(p/(1 − p))Sn/2λ. The ratio, which quantifies how
less likely the symmetric sample is under the asymmetric distribution, is (4p(1 −
p))n/2(p/(1 − p))Sn/2λ. Again, if p = 1/2 + gλ and n ∼ (L/λ)2, the ratio is finite
when λ → 0+, a fact which can be seen as a (weak) form of the statement that the
ratio between the symmetric distribution and the asymmetric continuum distribution
is finite: the continuum distribution depends smoothly on g.

Now we can go back to the case of percolation. We shall give first a very crude
argument and then a crude one. A rigorous proof is really involved.

The typical fluctuation of the number of occupied sites in a percolation sample is
∼ L/λ because there are ∼ (L/λ)2 independent sites. However if p = 1/2 + gλ3/4,
the typical asymmetry is ∼ gλ3/4(L/λ)2 = gL3/4(L/λ)5/4, which is much larger
that the fluctuation ∼ L/λ when λ → 0+, so one can assert with certainty that an in-
dividual sample is critical or not. In fact, the same counting implies that on any set
containing ∼ (L/λ)d hexagons and chosen independently of the percolation sam-
ple, the asymmetry ∼ gλ3/4(L/λ)d is much larger than the fluctuation ∼ (L/λ)d/2

as soon as d > 3/2. The critical percolation interface is bounded by ∼ (L/λ)7/4

hexagons so it covers enough of the sample to feel a macroscopic effect of the tiny
bias out of criticality. Of course, this is cheating because the interface as a set is
correlated to the hexagon configuration.

To do a bit better, we need a bit more knowledge. Take an interface drawn from
the symmetric distribution. We view the interface as the outcome of an exploration
process. Let n be the total number of choices. It is intuitive, and can be proved, that n
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scales like the total length of the interface, i.e. for a typical symmetric interface n ∼
(L/λ)7/4. If d is the difference between the number of black and white choices, i.e.
the asymmetry, the usual rules of chance ensure that d ∼ n1/2. So d ∼ (L/λ)7/8. For
an asymmetric distribution, the mean asymmetry for n choices is of order n(2p−1),
which for p = 1/2 + gλ3/4 yields ∼ gL7/4λ−1. This is much larger than (L/λ)7/8

when λ → 0+. Hence an interface which is typical for the symmetric distribution is
very atypical for an asymmetric continuum distribution.

2.2.2.3 General Remarks on Interfaces

We would like to extract some general features of interfaces that go beyond perco-
lation. The crucial observation is the following. We have defined percolation con-
figurations with an interface for any hexagonal domain (D, a, b) with admissible
boundary condition. For percolation, the weight of a configuration is a product of
independent weights, and partition functions are always 1. But the existence of an
interface is a “topological” fact: whatever the Boltzmann weights given to a colour-
ing of the inner hexagons in (D, a, b), the colouring will allow to identify a unique
well-defined interface connecting a and b.

To define models generalising percolation, a crucial step is to see how the in-
formation encoded in hexagon colourings can be retrieved from another type of
geometric data.

For each configuration, one paints the edges separating hexagons of different
colours. In particular, the edges forming the interface are among the painted edges,
but there are many more painted edges in general. The topology of the hexagonal
lattice leads to interesting consequences. Consider a vertex not on the boundary.
It touches three edges and three hexagons. By direct enumeration of the possible
colourings of these three hexagons, one checks that either 0 or 2 painted edges con-
tain the vertex. A boundary vertex touching only two hexagons can belong to 0 or
1 painted edge. A boundary vertex touching only one hexagon can belong to no
painted edge. Consequently, if the painted edges are grouped in connected compo-
nents, these components are simple curves (no branchings) that can only end at a
boundary vertex. For admissible boundary conditions, this implies that apart from
the interface, which ends at a and b, all the other curves are closed loops, and the
painted edges form a gas of self avoiding loops, plus the interface. An example is
shown in Fig. 2.8. Of course, would one fix all boundary hexagons to be of the same
colour, one would have no interface but only a loop gas. At the other extreme, if
the boundary conditions would allow many colour changes, one would see a gas
of interfaces and loops. In any case, the curves split the domain in connected com-
ponents in which all hexagons have the same colour. On the other hand, by defini-
tion, each time a curve is crossed, the hexagon colour changes. So one can proceed
backwards: if one keeps the curves but erases the hexagon colours except for a sin-
gle hexagon, the full colouring can be retrieved. If all hexagon colours are erased,
there is a twofold degeneracy in the reconstruction of hexagon colours from the
curve configuration. Of course, depending on the boundary conditions on hexagon
colours, only certain curve arrangements can occur.
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Fig. 2.8 A critical percolation sample with the hexagons colours and loops (left) and the same
configuration with only the loops (right)

The loop description is useful for several reasons. The first one is that it leads
to popular statistical mechanics models. The second is that it puts the study of the
interface on some natural footing. Indeed, the loops and the interface are objects of
the same nature. In particular from a physical viewpoint they are expected to share
many local properties. This is especially true at a critical point when comparing
large loops and the interface.

There are simple ways to associate a Boltzmann weight to a loop (or loop +
interfaces) configuration. A configuration � is made of a number of edges, say E�,
these edges building a number, say C�, of connected components (i.e. of disjoints
simple curves). We can then define a Boltzmann weight depending on 2 parameters,
K and n by the formula

w(�) = KE�nC�. (2.3)

Note that with this weight, the two-fold degeneracy between the hexagon colour
configuration and the loop (or loop + interfaces) description is irrelevant. The pa-
rameter K is a kind of fugacity, and n (if an integer) is related to some group
theory factors in another formulation of the model. Though we shall not explain
why here, this is the reason why one talks generically of the O(n) model. Per-
colation is described by n = 1 and K = 1. Keeping n = 1, K can be seen as
tanβ (i.e. as a temperature-like parameter) for a very famous model, the Ising
model,2 as shown by a standard large temperature expansion. So there is another
value of K , namely K = 3−1/2 for which the model is again critical. A glance
at Fig. 2.9, compared to Fig. 2.8 suggests that percolation leads to denser loops
than the critical Ising model. This is a general feature: for n ∈ [−2,2] by adjusting
K = K−

c := (2 − (2 −n)1/2)−1/2 one gets a critical dense loop gas and by adjusting
K = K+

c := (2 + (2 − n)1/2)−1/2 one gets a critical dilute loop gas. The section
on loop-erased random walks shows that they are closely related to n = −2 in the
dilute phase. Other values of n describe other systems of interest. For instance n = 2

2Warning: this relationship between percolation and the Ising model is special to hexagonal do-
mains!



66 M. Bauer

Fig. 2.9 An Ising sample with the hexagons colours and loops (left) and the same configuration
with only the loops (right). The sample is only “close to critical” due to finite size effects

is related to the XY model, the Kosterlitz-Thouless transition and the Gaussian free
field, n = 0 to self-avoiding walks (obvious with our definitions) and so on.

Let us close this short presentation by a few remarks. Keeping the domain fixed,
let Zab denote the partition in (D, a, b) with admissible boundary conditions, and
Z the same partition but with all boundary hexagons fixed to be of the same colour.
The ratio Zab/Z bears some analogy with a 2-point correlation function. Observe
that the inner hexagon colour configurations that contribute to Zab and Z are the
same, but the loop configurations are very different. Of course the loops that do not
touch the boundary hexagons are the same in both cases, but the loops that touch
the boundary are sensitive to a change of boundary conditions. For analogous rea-
sons, in general, there is no observable Oa such that Zab = ∑

� w(�)Oa(�)Ob(�).
However, one can find observables Oi

a , indexed by some parameter i such that
Zab = ∑

� w(�)
∑

i O
i
a(�)O

i
b(�). This may seem artificial, but is in fact closely re-

lated to the channels that appear in a quantum field-theory operator description of
the statistical system when Zab/Z is identified with a vacuum expectation value
〈Ω|ψ(a)ψ(b)|Ω〉. Note also that if one attributes weight 1 instead of n to loops
that touch the boundary, one can locally find observables Oa that allow to interpret
Zab/Z as an almost bona fide statistical 2-point correlation function.

2.2.3 Loop-Erased Random Walks

This example still keeps some aspects of a growth process, in that new pieces of
the process can be added recursively. Loop-erased random walks were invented
by Lawler as an example of random paths more tractable than the canonical self
avoiding walks. A loop-erased random walk (LERW) is a random walk with loops
erased along as they appear.
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2.2.3.1 Definition

More formally, if X0,X1, . . . ,Xn is a finite sequence of abstract objects, we define
the associated loop-erased sequence by the following recursive algorithm.

Initialise counters l = 0 and m = 1 and set Y0 = X0
Iterate while m ≤ n

{
– If there is a k with 0 ≤ k ≤ l such that Yk = Xm set l = k

– Else increment l by 1 and set Yl = Xm.
}
The loop-erased sequence is Y0, . . . , Yl .

Let us look at two examples.

1. For the “month sequence” j, f,m,a,m, j, j, a, s, o, n, d , the first loop is
m,a,m, whose removal leads to j, f,m, j, j, a, s, o, n, d , then j, f,m, j , lead-
ing to j, j, a, s, o, n, d , then j, j leading to j, a, s, o, n, d where all terms are
distinct.

2. For the “reverse month sequence” d,n, o, s, a, j, j,m,a,m,f, j , the first loop is
j, j , leading to d,n, o, s, a, j,m,a,m,f, j , then a, j,m,a leading to d,n, o, s,

a,m,f, j .

This shows that the procedure is not “time-reversal” invariant. Moreover, terms
that are within a loop can survive: in the second example m,f , which stands in the
j,m,a,m,f, j loop, survives because the first j is inside the loop a, j,m,a which
is removed first.

The above algorithm is most useful if the sequence X0,X1, . . . ,Xn is viewed as
a stream of data that is treated “on the fly”. If X0,X1, . . . ,Xn is known at once,
another algorithm erases the loop in possibly fewer steps. It goes as follows:

Initialise counters l = 0 and m = n

Until l = m, iterate
{

– Find the largest k ≤ m such that Xk = Xl

– If k > l remove the terms with indices from l + 1 to k, and
shift the indices larger than k by l − k to get a new
sequence.

– Decrement m by k − l and increment l by 1.
}

For the “month sequence”, this leads at once from j, f,m,a,m, j, j, a, s, o, n, d

to j, a, s, o, n, d , and then the counter l is incremented from 0 to 5 without fur-
ther removals. For the “reverse month sequence”, the counter l is incremented
from 0 to 4, a loop is removed leading from d,n, o, s, a, j, j,m,a,m,f, j to
d,n, o, s, a,m,f, j , then the counter l is incremented from 5 to 7 without further
removals.
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Fig. 2.10 A loop-erased
random walk with its shadow

A loop-erased random walk arises when this procedure is applied to a (two-
dimensional for our main interest) random walk. In the full plane this is very easy to
do. Figure 2.10 represents a loop-erased walk of 200 steps obtained by removing the
loops of a 4006 steps random walk on the square lattice. The thin grey lines build
the shadow of the random walk (where shadow means that one does not keep track
of the order and multiplicity of the visits) and the thick line is the corresponding
loop-erased walk. The time-asymmetry is clearly visible and allows to assert with
little uncertainty that the walk starts on the top right corner.

In this setting, it is trivial to get samples but the measure remains in the back-
ground. One possible approach is the following. Consider a symmetric random walk
on the square lattice and view the successive positions as a stream of data. Remove
the loops as they show up, and stop the random walk at the first time n for which the
associated loop-erased walk has reached length N . The probability of the random
walk is 4−n. Note that the set of random walks for which the loop-erasure never
reaches size N has probability 0, for instance as a subset of the set of random walks
that remain in the ball of radius N centred at the origin forever. So the total proba-
bility for the set of random walks stopped when their loop-erasure reaches length N

is 1. This procedure leads to a finite family of loop-erased walks, each of them can
be obtained via the loop erasure of an infinite number of random walks. The proba-
bility of a given loop-erased walk is taken to be sum of the individual probabilities
of its random walk ancestors.

This can be adapted to the setting of discrete domains with admissible boundary
condition. Let (D, a, b) be such a domain, and let ν be the coordination number
of the associated tiling, i.e. the number of edges adjacent to a vertex: ν is 6 or the
triangular tilings, 4 for the square tilings, and 3 for the hexagonal tilings. Consider
the set of walks from a to b in D∪ {a, b} that visit a and b only once, and give each
step weight ν−1, so that the weight of a walk is the usual random walk probability
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on the tiling. However, the total weight of walks from a to b in D ∪ {a, b} is < 1.
As before, these walks can be loop-erased, and the weight of a simple path γ from
a to b in D ∪ {a, b} is taken to be sum of the weights of all random walks from
a to b in D ∪ {a, b} whose loop erasure leads to γ . To get a probability measure,
one needs to divide the weight by the total weight of all random walks from a to
b in D ∪ {a, b}. This is easy in principle, and is closely related to the solution of
the discrete Laplace equation with appropriate boundary conditions; in practice this
normalisation can be computed explicitly for only a handful of examples.

In the same spirit, if we have an arbitrary weight assignment for walks from a

to b in D ∪ {a, b}, we can use it to induce a weight on simple paths from a to b in
D∪ {a, b} again by taking the weight of a simple path γ to be sum of the weights of
all random walks from a to b in D ∪ {a, b} whose loop erasure leads to γ . What is
special about the standard random walk weight is that, as is well known, the random
walk has a scale-invariant limit (Brownian motion of course), so the corresponding
loop-erased random walk can be expected to have a scale-invariant limit. The loop-
erased random walk is one of the first systems that has been proved to have a (not
only scale—but even) conformally invariant continuum limit, the fractal dimension
being 5/4. A naive idea to get directly a continuum limit representation of loop-
erased walks would be to remove the loops from a Brownian motion. This turns
out to be impossible due to the proliferation of overlapping loops of small scale.
However, the SLE2 process, to be defined later, gives a direct definition. In fact, it
is the consideration of loop-erased random walks that led Schramm to propose SLE
as a description of interfaces.

2.2.3.2 Simulation

We have seen that is very simple to generate loop-erased random walks of a fixed
length N in the plane. We could use this technique to get a probability measure on
the first N steps of loop-erased random walks of length M . However, it is unclear
whether this probability measure stabilises if we fix N and let M go to infinity.
One of the problems is that in two dimensions, random walks are recurrent: with
probability one they visit every site (and then they have to do it infinitely many
times). So if we erase the loops of a random walk, the resulting loop-erased walk
never stabilises; if we wait long enough, the random walk comes back to the origin
and at that instant the loop-erased walk starts anew from scratch.

The numerical simulation of a loop-erased random walk in domains (D, a, b) is
not easy either, because the random walks have a tendency to leave D. Note that it
would bias the sampling if we would forbid them to leave by simply dispatching
the weight of steps leaving D to the ones staying in D. What one has to do is to
condition on random walks staying in D. So most samples would have simply to
be rejected and only from time to time would a sample be a walk from a to b in
D∪ {a, b}.

There is one exceptional domain in which at the same time an infinite loop-erased
random walk can easily be defined and simulated. It is when D is the square tiling of
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a half-space, conventionally taken to be Hint, the tiling of the upper-half-plane with
vertices at the points (n,m) ∈ Z × N, a is O := (0,0) (by translation-invariance
along the real axis, any boundary vertex would do) and b is infinity. Let us explain
why random walks on the square lattice conditioned to go from O to infinity while
staying in Hint have a simple description.

The horizontal steps are not an issue, and we can concentrate on vertical steps.
For a simple random walk in one dimension, it is well-known that a walk started at
m ∈ [0, l] touches the boundary for the first time at the endpoint 0 with probability
1−m/l and at the endpoint l with probability m/l. Indeed, if p(m) is the probability
to touch the boundary for the first time at the endpoint 0, then p(0) = 1, p(l) = 0
and if m ∈ ]0, l[, p(m) = 1

2 (p(m − 1) + p(m + 1)) as can be seen by conditioning
on the first step of the walk. So by the usual rules of conditional probabilities, if the
random walk is conditioned to exit at l and is at m ∈ ]0, l[ at time t , it has probability
m+1
2m

to go to m + 1 and m−1
2m

to go to m − 1. This has three striking consequences.
First, the process remains Markov and time homogeneous. Second, the transition
probabilities do not depend on l, so they can be used even if l is infinite. Third,
taking l infinite, the probability, starting at m, never to visit m′ < m is 1−m′/m > 0
as can be seen by conditioning on the first step of the walk.

These three properties imply that each site is visited only a finite number of times,
i.e. the walk escapes to infinity. Let us explain this in more detail. Suppose the walk
starts from 0, goes to 1 at the first step, and then the above transition probabilities are
used. Then at the second step the walk goes to 2. With probability 1/2 it never goes
back to 1 again. With probability 1/2 it comes back to 1 at some point, and then the
walk starts anew. Thus the number of visits to 1 follows a geometric law: 1 is visited
k ≥ 1 times with probability 1/2k . In particular the probability to visit 1 at least k

times is 1/2k−1 which goes to 0 (in fact exponentially). Hence with probability 1
the number of visits of point 1 is finite. The same argument generalises. First, let s

be the probability that point m ≥ 1 is never visited. Suppose the walk is at point m.
With probability m+1

2m
it goes to m + 1 and then with probability 1 − m

m+1 = 1
m+1

it never goes back to m again. So the total probability that the walk starting from
m never visits m again is r ≥ 1

2m
> 0. It follows that the number of visits to m

follows essentially a geometric law: m is visited 0 times with probability s and
k ≥ 1 times with probability (1 − s)r(1 − r)k−1. Again, the probability to visit m

at least k ≥ 1 times is (1 − s)(1 − r)k−1 which goes to 0 (in fact exponentially).
Hence with probability 1 the number of visits of point m is finite. This is true for
any m and any starting point for the walk. Hence, in particular we see recursively
that if the walk is at m′ < m, m will be visited later with probability one, because
with probability 1 all points in [0,m − 1] are visited only finitely many times. This
means that in fact r = 1

2m
. To summarise, if the walk starts from 0, the number of

visits to m ≥ 1 is k ≥ 1 with probability 1
2m

(1 − 1
2m

)k−1. In particular, the walk is
transient, i.e. it escapes to ∞ with probability 1.

So we use the usual random walk in the horizontal direction but the conditioned
random walk in the vertical direction. Explicitly, at the first step the walk goes from
(0,0) to (−1,1) or (1,1) with probability 1/2, and later, if at (n,m), the walk makes
a step in the NE or NW directions with probability m+1

4m
and in the SE or SW direc-



2 A Short Introduction to Critical Interfaces in 2D 71

Fig. 2.11 A sample of the
loop-erased random walk

tions with probability m−1
4m

. Call the vertical coordinate altitude for convenience.
As explained before, the altitude of the walk goes to ∞ with probability one, and
the associated loop-erased walk converges. More precisely, for m < M stop the ran-
dom walk the first time it reaches altitude M and stop the corresponding loop-erased
random walk at altitude m. Then with probability > 1 − m/M the loop-erased ran-
dom walk up to altitude m will not be modified by the subsequent evolution of the
random walk. This is because to close a loop, the walk has to come back to the same
point, which is more stringent than to come back to the same altitude. Hence, letting
M go to infinity, we get a well defined limiting distribution for loop-erased random
walks from O to altitude m for any m, hence for loop-erased random walks from
O to ∞. Accurate numerical simulations are made by taking M � m. However, the
process for which m = M is interesting as well. It has a continuum limit which can
be studied with the so-called dipolar variant of stochastic Loewner evolutions.

Figure 2.11 shows a sample of loop-erased random walk of about 105 steps.
At first glance, one observes a simple (no multiple points) irregular curve with a
fractal structure. The intuitive explanation why a loop-erased random walk has a
tendency not to come back too close to itself is that if it would do so, then with large
probability a few more steps of the random walk would close a loop.

2.2.3.3 Relation with Statistical Mechanics

Again, it is useful to make the connection between the purely geometric description
of loop-erased random walks and more conventional statistical mechanics.
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The starting point of the correspondence is a formula for the expansion of the
determinant det(1 − A) when A = (Avv′)v,v′∈V is a matrix with index set V . For
later convenience, we call the elements of V vertices. A cycle of length k ≥ 1 in
V is sequence (v1, . . . , vk) of distinct vertices of V modulo cyclic permutation;
so that (v1, . . . , vk), (v2, . . . , vk, v1), . . . represent one and the same cycle. Cycles
are said to be disjoint if no vertex appears in more than one of them. The subsets
{C1, . . . ,Cn} of P(V ) made of n disjoint cycles of V form a set that we denote
Cn. The weight of a cycle C represented by (v1, . . . , vk) is by definition w(C) :=
Av1v2 . . .Avk−1vk

Avkv1 (for k = 1, this reduces to Av1v1 ) which indeed is invariant
under cyclic permutations.

An elementary reorganisation of Cramer’s formula yields

det(1 − A) =
∑

n≥0

(−1)n
∑

{C1,...,Cn}∈Cn

w(C1) . . .w(Cn). (2.4)

Similarly, for v, v′ ∈ V we define a walk of k steps from v to v′ in V to be
any sequence of vertices (v0, . . . , vk) with v0 = v and vk = v′ but with v1, . . . , vk−1

distinct from v and v′. Hence with this definition a walk visits its starting and end
point only once. This restriction is a bit unusual, but it is not really crucial. The
weight of a walk W = (v0, . . . , vk) is taken to be w(W) := Av0v1 . . .Avk−1vk

.
The sequence W can be loop-erased to yield a path from v to v′ (remember that

paths are walks in which a given vertex appears at most once). If γ is a path, we
define

w̃(γ ) :=
∑

W �→γ

w(W), (2.5)

where the sum is over all walks whose associated loop-erased walk is γ . We aim at
a general formula for w̃.

Let γ = (v0, . . . , vk) be a path from v, v′ ∈ V . Let V (0) := V \{vk, v0},V (1) :=
V \{vk, v0, v1}, . . . . For l = 0, . . . , k − 1 let A(l) be the matrix A restricted to the
vertex set V (l).

A walk W which yields γ after loops have been erased can be decomposed as
follows (see the second loop-erasing algorithm on p. 67): the walk (v0, v1), fol-
lowed by an arbitrary number of walks from v1 to v1 in V (0), followed by the walk
(v1, v2), followed by an arbitrary number of walks from v2 to v2 in V (1) and so
on. Take 1 ≤ l ≤ k − 1. Note that if one expands ( 1

1−A(l−1) )vlvl
in formal power

series in the coefficients of A, one gets exactly the sum of the weights for the con-
catenation of an arbitrary number of walks from vl to vl in V (l−1). Hence we infer
that

w̃(γ ) = Av0,v1

(
1

1 − A(0)

)

v1v1

Av1,v2

(
1

1 − A(1)

)

v2v2

Av2,v3

× . . . × Avk−2,vk−1

(
1

1 − A(k−2)

)

vk−1vk−1

Avk−1,vk
.
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But by Cramer’s formula for the inverse of a matrix,
(

1
1 − A(l−1)

)

vlvl

= det(1 − A(l))

det(1 − A(l−1))
for l = 0, . . . , k − 1.

Hence the product in the above formula for w̃(γ ) is telescopic, and we get the
representation we were aiming at:

w̃(γ ) = w(γ )
det(1 − A(k−1))

det(1 − A(0))
. (2.6)

A first use of this formula is that is shows clearly that if the matrix A is symmet-
ric, the loop-erased random walk weight is reversible i.e. the same for a path and its
opposite or time reversal. In all cases the asymmetry comes solely from the weight
of γ .

It is time to interpret the formulæ obtained so far in connection with statistical
mechanics.

We start with Eq. (2.4) but read from right to left. The right-hand side can be
seen as a partition function for a gas of oriented loops on a graph. Indeed, if E is
an arbitrary subset of V × V , we can consider the corresponding oriented graph
G = (V ,E) i.e. view E as the set of edges if G. We give each edge in (v, v′) ∈ E

the weight Avv′ and impose that Avv′ = 0 if (v, v′) /∈ E. An oriented loop on G is
a sequence (v1, . . . , vk) of distinct vertices of V modulo cyclic permutation, with
the condition that (v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1) are in E. Except for the
last condition, this is what we called a cycle before: note that “cycle” reminds of the
permutation context whereas “loop” reminds of geometric context. A configuration
is a family of disjoint oriented loops, each oriented loop counts for a weight which
is the product of the weight of the traversed edges and an overall factor (−1). Then
the partition function, i.e. the sum of the weights of all possible configuration is by
definition the right-hand side of Eq. (2.4), and this reconstructs the determinant on
the left-hand side. We can specialise more by assuming further that E is a symmetric
subset of V ×V that does not meet the diagonal, and that A is symmetric. Then there
is no loop of length 1, and the loop (v1, . . . , vk) has the same weight as the loop
traversed in the opposite order (vk, . . . , v1). If k = 2 a loop and its opposite are the
same, but not if k ≤ 3. So we get the same partition function if instead of summing
over oriented loops, we sum over un-oriented loops counting each un-oriented loop
of length ≥ 3 twice, i.e. giving un-oriented loop of length ≥ 3 an overall factor (−2)

instead of (−1). Finally, we could also give each edge in E the same weight K so
that the weight of a loop configuration would be

(−1)# loops of length 2(−2)# loops of length≥3K#traversed edges

where of course loops of length 2 count for 2 traversed edges.
This statistical weight could be used as a definition of the so-called O(−2)

model, where −2 reminds of the overall weight of each loop (of length ≥ 3). This
model has several avatars, which are supposed to be in the same universality class,
i.e. to describe the same macroscopic physics in the continuum limit. In certain ver-
sions, loops of length 2 are completely forbidden, at the price of renormalising K .



74 M. Bauer

Replacing the factor (−2) by a factor n yields the general O(n) model, which we
have seen before.

Note that the partition function, i.e. det(1 − A) has a simple “field-theory” inter-
pretation: if χv and χ̄v , v ∈ V are a collection of independent Grassmann variables,
the fundamental result of Grassmann integration is

det(1 − A) =
∫ ∏

v∈V

dχv dχ̄v e
∑

v,v′ χv(δvv′−Avv′ )χ̄v′ .

This is the clue to the quantum field-theory approach to loop-erased random walks.
Before we interpret Eq. (2.6), let us start with a general observation. Suppose C

is a configuration space, assumed to be finite for simplicity and consider a model of
statistical mechanics on C . Each c ∈ C has a weight w(c). The partition function
is Z := ∑

c∈C w(c). Suppose C can be partitioned as C = ⋃
γ∈Γ Cγ . Then we can

define Zγ := ∑
c∈Cγ

w(c) for γ ∈ Γ , and Zγ can be interpreted as the marginal
weight of Cγ . The probability of Cγ is simply Zγ /Z. In concrete situations, the
splitting C = ⋃

γ∈Γ Cγ will usually have some interpretation. For instance, in the
cases we are interested in these notes, we shall look at configuration spaces C that
describe a statistical mechanics model on domains (D, a, b) with boundary condi-
tions, in such a way that in each c ∈ C we can identify unambiguously a path γ

joining a to b. Of course γ depends on c, and we can use this γ to split c. Then
Zγ /Z is simply the probability to observe the path γ . The reader should have an-
other glance at Sect. 2.2.2.2 to look at the relationship between the exploration path
and percolation from this viewpoint.

Equation (2.6) can then be interpreted straightforwardly. We consider now con-
figurations made not simply of (mutually avoiding) loops, but of (mutually avoiding)
loops avoiding a path from v to v′. The total weight of configurations for a fixed path
from v to v′ is simply the numerator of the right-hand side of Eq. (2.6). The denom-
inator depends on v and v′ but not on the simple path between them. So from the
point of view of statistical mechanics explained before, the weight the loop-erased
random walk model assigns to a path γ , i.e. the left-hand side of Eq. (2.6), is pro-
portional to the marginal weight of configurations of “loops plus that path” in the
loop gas model.

Hence we have succeeded in giving an interpretation of the loop erased random
walks as interfaces in a statistical mechanics model. We are cheating a bit here
because even if we take a positive edge weight K , due to the (−) sign associated
to each loop, individual configurations may well have a negative weight, so that a
straightforward probabilistic interpretation is not available.

Our interest is of course the case when the graph G is the one associated with
a discrete domain (D, a, b) with admissible boundary conditions. If we take for the
edge weight K the inverse of the coordination number ν of the tiling, 1−A is essen-
tially the discrete Laplacian with Dirichlet boundary conditions. This suggests again
that a continuum limit exists, for which (continuum) loop-erased random walks in
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a (continuum) domain D from a to b are related to the field-theory of so-called
symplectic fermions with measure

Dχ D χ̄ exp
∫

D

∇χ · ∇χ̄

with Dirichlet boundary conditions. This field-theory is well-known to be confor-
mally invariant. But K −1/ν = −λ2 is a scaling function which leads to the addition
of a mass term to the action.

We conclude this section by noting without justification that the way to impose
the existence of a path from a to b is to insert in correlation functions the observable
J (a)J̄ (b) where J (a) (resp. J̄ (b)) is the normal derivative of χ (resp. χ̄ ) at a (resp.
at b).

2.2.4 Another Example of Growth: DLA

Up to now, the two growth processes we have defined shared some common fea-
tures. The next one, diffusion-limited aggregation (DLA), is of a rather different
nature. It is believed to have a scale-invariant but not conformally invariant limiting
distribution. Another reason to introduce DLA is that it can also be modelled via
Loewner chains, a subject we touch in the next section. Finally, DLA seems to be
a relevant model for a variety of phenomena in physics, for instance aggregation or
deposition phenomena, but also in biology, for instance growth of bacterial colonies
under certain circumstances.

DLA stands for diffusion limited aggregation. It refers to processes in which the
domains grow by aggregating diffusing particles. Namely, one imagines building up
a domain by clustering particles one by one. These particles are released from the
point at infinity, or uniformly from a large circle around the growing sample, and
diffuse as random walkers. They will eventually hit the sample and the first time this
happens they stick to it. Then the procedure goes on. By convention, time is incre-
mented by unity each time a particle is added to the domain. Thus at each time step
the area of the domain is increased by the physical size of the particle. The position
at which the particle is added depends on the probability for a random walker to visit
the boundary for the first time at this position, which is essentially what is called the
harmonic measure at that position. During this process the clustering domain gets
ramified and develops branches and fjords of various scales. The probability for a
particle to stick on the cluster is much higher on the tip of the branches than deep
inside the fjords. This property, relevant at all scales, is responsible for the fractal
structure of the DLA clusters.

In a discrete approach one may imagine that the particles are tiny squares whose
centres move on a square lattice whose edge lengths equal that of the particles, so
that particles fill the lattice when they are glued together. The centre of a particle
moves as a random walker on the square tiling. The probability Q(x) that a particle
visits a given tile x satisfies the discrete version of the Laplace equation ∇2Q = 0.
It vanishes on the boundary of the domain, i.e. Q = 0 on the boundary, because the
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probability for a particle to visit a tile already occupied, i.e. a point of the growing
cluster, is zero. The local speed at which the domain is growing is proportional to the
probability for a tile next to the interface but on the outer domain to be visited. This
probability is proportional to the discrete normal gradient of Q, since the visiting
probability vanishes on the interface. So the local speed is vn = (∇Q)n. To add a
new particle to the growing domain, a random walk has to wander around and the
position at which it finally sticks is influenced by the whole domain. To rephrase
this, for each new particle one has to solve the outer Laplace equation, a non-local
problem, to know the sticking probability distribution. This is a typical example
when scale-invariance is not expected to imply conformal invariance.

It is not so easy to make an unbiased simulation of DLA on the lattice. One of
the reasons is that on the lattice there is no such simple boundary as a circle, for
which the hitting distribution from infinity is uniform. The hitting distribution on
the boundary of a square is not such a simple function. Another reason is that de-
spite the fact that the symmetric random walk is recurrent is 2D, each walk takes
many steps to glue to the growing domain. The typical time to generate a single
sample of reasonable size with an acceptable bias is comparable to the time it takes
to make enough statistics on loop-erased random walks or percolation to get the
scaling exponent with two significant digits. Still this is a modest time, but it is
enough to reveal the intricacy of the patterns that are formed. Figure 2.12 is such
a sample. The similarity with the sample in Fig. 2.13, obtained by iteration of con-
formal maps, is striking. But a quantitative comparison of the two models is well
out of analytic control and belongs to the realm of extensive simulations. There is
now a consensus that the fractal dimension of 2D DLA clusters is df,DLA � 1.71.
It has been long debated whether or not discrete simulations done right nevertheless
do keep a remnant of the lattice at large distance. There is some consensus now that
for instance the orientation of the lattice can be seen even in the large, and rotation
invariant algorithms should be preferred.

2.3 Loewner Chains

There are many possible descriptions of subsets of a set. Some may look more nat-
ural than others but it is the problem at hand that decides which one is the most
efficient. Growth processes in two dimensions involve time-dependent subsets of
the complex plane C. Loewner chains have proved to be an invaluable tool in this
context. The simplest situation is when they are used to describe families of do-
mains. These notes deal (almost) exclusively with that case.

Loewner chains were introduced (by Loewner!) in the context of the Bieberbach
conjecture, now a theorem proved by de Branges in 1985. It states that if f (z) =
z + ∑

n≥2 anz
n is a holomorphic function injective in the unit disc U = {z ∈ C,

|z| < 1} then |an| ≤ n for n ≥ 2. Bieberbach proved that |a2| ≤ 2 in 1912, and
Loewner proved in 1923 that |a3| ≤ 3 using a dynamical picture of the changes
of f (U) when the an’s change, starting from the trivial case f (z) = z.
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Fig. 2.12 A DLA sample

2.3.1 Around Riemann’s Theorem

Recall that a domain D is a non-empty open simply connected strict subset of the
complex plane C. Simple connectedness is a notion of purely topological nature
which in two dimensions asserts essentially that a domain has no holes and is con-
tractile: a domain has the topology of a disc.

• Riemann’s theorem states that two domains D and D
′ are always conformally

equivalent, i.e. there is an invertible holomorphic map g : D �→ D
′ between them.

Riemann stated the theorem but his argument had many gaps. This was at least
partly at the origin of the formidable development of functional analysis in the
twentieth century but it took decades before a proof meeting modern standards was
found.

Extending g to the boundary of D is impossible in general if the topological
boundary is used, i.e. if the boundary of D is taken as the complement of D in
its closure (the notion of boundary one learns at school). As an example, take D

to be the upper half-plane H with the vertical line segment ]0, ia] removed and
D

′ = H. The naïve boundary of D is the union of R and ]0, ia]. The limits of g(z)

when z approaches a given point of the segment ]0, ia] from the left or from the
right must be distinct. But another notion of boundary can be defined for which
a continuous extension at the boundary is always possible. Intuitively, this more
involved notion keeps track of the different sides from which a naïve boundary point
can be approached.
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Fig. 2.13 A shape produced
by iteration of random
conformal maps

This is trivial in our simple example but the general situation is involved. In
Sect. 2.2.1, we mentioned the idea to define an appropriate notion of boundary
by duality by saying that the space of functions on the boundary is the space of
harmonic functions in the domain. Riemann’s theorem gives a strong incentive to
do that. It is known that for any continuous function on the unit circle, there is a
single function continuous in the closed unit disk, harmonic in the open unit disk
and with the prescribed value on the boundary. One can extend this idea to de-
fine wilder “functions” on the unit circle by saying that they are “boundary val-
ues” of a larger class of harmonic functions in the open unit disk (for instance
all bounded harmonic functions). By Riemann’s theorem, any domain is confor-
mally equivalent to the open unit disk. As holomorphic maps preserve harmonicity,
one gets a notion of “function on the boundary” for an arbitrary domain and this
notion is conformally invariant. Then by some kind of duality one passes from
the space of functions on the boundary to the boundary itself. Serious work is
needed to turn this intuition into mathematics, but it can be done. We shall freely
use the word “boundary” in what follows, leaving to the reader the task of de-
ciding from the context which kind of boundary we have in mind. In cases when
there is only one way to approach naïve boundary points, the two notions coïn-
cide.

In simple cases, the map f can be found in closed form. For instance, the upper-
half-plane H and the unit disc {z ∈ C, |z| < 1} centred on the origin are two do-
mains. The conformal transformation f (z) = i 1−z

1+z
maps the unit disc biholomor-

phically onto the upper half plane with f (0) = i and f (1) = 0. But finding a closed
formula for f in the general case is impossible.

The upper half-plane has a three-dimensional Lie group of conformal automor-
phisms, PSL2(R), that also acts on the boundary of H. This group is made of ho-
mographic transformations f (z) = az+b

cz+d
with a, b, c, d real and ad − bc = 1. To

specify such a map we have to impose three real conditions. Hence, there is a unique
holomorphic automorphism—possibly followed by a conjugation—that maps any
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triple of boundary points to any other triple of boundary points. Similarly there is
unique homographic transformation that maps any pair made of a bulk point and a
boundary point to another pair of bulk and boundary points. By Riemann’s theorem,
any domain has a Lie group of conformal automorphisms isomorphic to PSL2(R)

and the same normalisation conditions can be used.
Riemann’s theorem is used repeatedly in the rest of these notes. It is the starting

point of many approaches to growth phenomena in two dimensions since it allows
to code the shapes of growing domains in their uniformising conformal maps. To
make the description precise, one has to choose a reference domain against which
the growing domains are compared. By Riemann’s theorem, we may choose any
domain as reference domain—and depending on the geometry of the problem some
choices are more convenient than others. The unit disc and the upper half plane are
often used as reference domains.

2.3.2 Hulls

One can be a more explicit when the domain D differs only locally from the upper
half-plane H, that is if K = H \D is bounded. Such a set K is called a hull. The real
points in the closure of K in C form a compact set which we call KR. In that case,
H is the convenient reference domain. Let g : D �→ H be a conformal bijection. For
z ∈ D define g(z) := g(z). If z approaches a point x on the real axis while staying
within D, g(z) has a real limit which we denote by g(x). It follows that g extends
to a holomorphic map on the connected open set D ∪ D ∪ (R \ KR) ∪ ∞ of the
Riemann sphere, which contains a neighbourhood of ∞. This is an illustration of the
Schwartz reflection principle. One can use the automorphism group of H to ensure
that g(z) = z+O(1/z) for large z. This is called the hydrodynamic normalisation.
It involves three conditions: g maps ∞ to ∞, has unit derivative there, and has no
constant term. These three condition are real because ∞ is on the boundary of the
upper half-plane seen within the Riemann sphere. There is no further freedom left.
Thus any property of g is an intrinsic property of K.

We shall denote this special representative by gK. The inverse map fK is holo-
morphic on the full Riemann sphere except for cut along a compact subset of R

across which its imaginary part has a positive discontinuity (in general this is a
measure) dμ(x). Away from the cut, fK has the standard representation

fK(w) = w − 1

π

∫

R

dμ(x)

w − x
.

The coefficients of the expansion of fK at infinity are essentially the moments of
μ. I particular, they are real. Each of them quantifies an intrinsic property of K.
The number CK := 1

π

∫
R

dμ(x) is the total mass of μ. It is positive (or 0 is K is
empty). Note that fK(w) = w − CK/w + . . . at large w and by inverting, gK(z) =
z + CK/z + . . . at large z. The coefficient CK plays an important role. It is called
the capacity of K seen from ∞. It’s positivity is intuitively related to the fact that
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one removes a piece from H. Capacity is trivially translation-invariant, (Cx+K = CK

where, for x ∈R, x +K denotes the translate of K by x units along the real axis) and
has weight 2 under dilatations (CsK = s2CK if s is a positive scale factor). Capacity
has an additive property: simple series manipulations show that if K′ and K

′′ are
two hulls and K = K

′ ∪ g−1
K′ (K′′) (which is another hull) then CK = CK′ + CK′′ .

2.3.3 Basic Examples

Example 1 (The semi-disc) Maybe the simplest example is when K is a semi-disc
{z ∈ H, |z − b| ≤ r} for a real b and real positive r . Then gK(z) = z + r2/(z − b).
Expansion at large z shows that CK = r2.

Example 2 (The vertical line segment) In the example when K is the vertical line
segment ]0, ia], one gets gK(z) = √

z2 + a2, a formula by which we mean the an-
alytic continuation of the function z

√
1 + a2/z2 were the square root is defined by

its usual power series around 1 when z is large. Expansion at large z shows that
2CK = a2.

Example 3 (The oblique line segment) The case when K is an oblique line segment
]0, aeiπb] making an angle πb with respect to the real positive axis (b ∈ ]0,1[)
yields

z = (
gK(z) − x+

)b(
gK(z) − x−

)1−b
,

where the real parameters x− < 0 < x+ satisfy bx+ + (1 − b)x− = 0 and
(−x−)bx1−b+ = a. Expansion at large z shows that 2CK = b(1 − b)(x+ − x−)2.
The closer the line is to the real axis (i.e. the closer b is to 0 or π ) and the larger a

has to be to reach a given capacity.

Example 4 (Arc of circle) An instructive example is when K is the arc ]r, reiϑ ] of a
circle centred at 0 of radius r . Some of the following computations require to keep
a precise track of the determination of the square root that appears in the formula
for gK because it is crucial for the interpretation. The map f (w) = (w − r)/(w + r)

sends the arc to the vertical line segment ]0, i tanϑ/2], so that by Example 2, w �→√
f (w)2 + tan2 ϑ/2 is a conformal map from D to H. However, this map sends ∞ to

1/(cosϑ/2), not to ∞. To get the hydrodynamic normalisation, we have to compose
with an appropriate automorphism of H. This yields

gK(w) = r
−(2 − cos2 ϑ/2) cosϑ/2

√
( z−r
z+r

)2 + tan2 ϑ/2 + 2 − 3 cos2 ϑ/2

cosϑ/2
√

( z−r
z+r

)2 + tan2 ϑ/2 − 1
,

whose expansion at ∞ starts like gK(w) = w + (1 − cos4 ϑ/2)r2/w + O(1/w2).
Hence the capacity is CK = (1 − cos4 ϑ/2)r2.
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The tip of the arc, reiϑ is mapped to (3 cos2 ϑ/2 − 2)r by gK. One checks that
(
gK(w) − gK

(
reiϑ))∂gK(w)

∂ϑ
= 2r2 sinϑ/2 cos3 ϑ/2,

which is w-independent.
Moreover limw �→r− gK(w) = r(1 − 2 sinϑ/2 − sin2 ϑ/2) and limw �→r+ gK(w) =

r(1 + 2 sinϑ/2 − sin2 ϑ/2). The behaviour of gK when ϑ �→ π− is interesting. In
this limit, K becomes a semicircle. Let K̃ = {w ∈H, |w| ≤ r} be the corresponding
semi-disc. The points w inside K̃ are cut away from ∞ when ϑ �→ π−, and one
checks that limϑ �→π− gK(w) = −2r for these points, i.e. they are swallowed in the
limit. However, the points {w ∈ H, |w| > r} are mapped to limϑ �→π− gK(w) = w +
r2/w = g

K̃
(w).

2.3.4 Iteration of Conformal Maps

With Riemann’s theorem at our disposal, we can start to encode growth processes.
Suppose than the initial domain is the upper half-plane and that a small amount of
matter is removed at each time step (so that in fact it is the lower half-plane that
grows). At time step n, a certain Kn has been removed from H. Let gn := gKn

denote the corresponding map and fn its inverse. Then gn(Kn+1 \ Kn) describes a
small amount of matter removed to H. If gn(Kn+1 \ Kn) has typical size s and is
located in the neighbourhood of point x on the real axis, Kn+1 \Kn, which is what
is really removed at time n + 1 has typical size s|f ′

n(x)|.
Example 5 (Simple iteration) Choose a small number ε. Let bn, n > 0 be an inde-
pendent sequence drawn from some chosen probability distribution. At time step
n+ 1 take gn(Kn+1 \Kn) to be the semi-disc {z ∈H, |z − bn+1||f ′

n(bn+1)| ≤ ε}, so
that

gn+1(z) = gn(z) + ε2

|f ′
n(bn+1)|2(gn(z) − bn+1)

.

This defines a random growth process were at each time step a small semi-disc-
like grain of matter of size ∼ ε is removed. Despite its simplicity, little is known (at
least to the author) about this process.

Many other (probabilistic or deterministic) rules can be invented, but the resulting
processes are mostly impossible to study analytically at the moment. Let us simply
note to conclude that the samples obtained by methods (but using the disc geometry)
look strikingly like DLA. Figure 2.13 is obtained by iteration of conformal maps,
compare with Fig. 2.12.

2.3.5 Continuous Time Growth Processes

Our aim is to motivate the introduction of Loewner chains.
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Fig. 2.14 The uniformisation of well-separated small semi-discs

If K is not simply a semi-disc, but a union of well-separated small semi-discs of
radii rα centred at bα (see Fig. 2.14), a moment of thought leads to realise that

gK(z) ∼ z +
∑

α

r2
α

z − bα

.

The large z expansion yields CK ∼ ∑
α r2

α , a positive number as expected.
Taking a naïve limit, one gets that if ε is a small positive number, v(x) is a non-

negative function on R and K = {z = x + iy ∈ H, y ≤ εv(x)} then

gK(z) ∼ z + ε

π

∫

R

v(u)du

z − u
.

Indeed, using that, if v(x) �= 0, limε �→0+ Imm(x + iεv(x) − u)−1 = πδ(u − x) one
checks that Imm 1

π

∫
R

v(u)du
x+iεv(x)−u

∼ −v(x) so that to first order in ε gK(z) is real
when z is on the boundary of K. Even more generally, one could replace the pos-
itive measure v(u)du by any positive measure dρ(u). A naïve large-z expansion,
certainly valid if the function v (or more generally the measure dρ) has compact
support and finite mass, gives CK ∼ ε

π

∫
R

v(u)du (more generally CK ∼ ε
π
ρ(R)),

again a positive number.
Now think about a continuous time growth process for which Kt has been re-

moved from H at time t . Set Ht := H \ Kt . Let gt := gKt
: Ht → H denote the

corresponding map and ft : H → Ht its inverse. Fix t and a small positive ε. Then
gt (Kt+ε \Kt ) describes a small amount of matter removed to H. We could take as a
definition of continuous time growth that the associated map gt+ε ◦ ft is described
by a non-negative function vt (u) or more generally a positive measure dρt (u) as
above. Taking the limit ε �→ 0+ leads to

∂gt (z)

∂t
= 1

π

∫

R

dρt (u)

gt (z) − u
. (2.7)

Taking the time derivative of ft ◦ gt (z) = z and substituting w = gt (z) yields

∂ft (w)

∂t
= −f ′

t (w)p(w, t) where p(w, t) := 1

π

∫

R

dρt (u)

w − u
. (2.8)

Note that p(w, t) is holomorphic in H and the positive measure ρt (u) is its boundary
value in a generalised sense (hyperfunctions).

Equation (2.8) is called a Loewner chain with reference domain H, though
we shall use the name Loewner chain for (2.7) as well. The analogous equations
with reference domain the unit disc can be obtained straightforwardly by the same
arguments. The large-z expansion yields

dCKt

dt
= 1

π
ρt (R) ≥ 0.
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So if hulls are constructed little by little by a growth process, the capacity increases
with time (in particular it is obviously positive).

In principle, if the family of measures ρt is given, one can solve for gt (z) with
the initial condition g0(z) = z. Again, ρt can be random or deterministic. We should
note that Loewner chains are in some sense kinematic equations that give a general
framework to encode growth processes. But in a real dynamical problem ρt has to
be specified. It may depend explicitly on gt . For instance dρt (u) = |f ′

t (u)|−2 du is
related to Laplacian growth, though the unit disc geometry is the relevant one in that
case. The exponent −2, which we already interpreted for discrete iteration, ensures
that the size of Kt grows linearly with time. But other exponents between 0 and
−2 are interesting too. Note that DLA provides a discrete analogue of Laplacian
growth. The particle size plays the role of an ultraviolet cutoff.

2.3.6 Geometric Interpretation

One can give the following geometric interpretation of Loewner chains. Set gt (z) :=
zt , view zt as the position of a fluid particle as time goes by, and suppose for sim-
plicity that dρt (u) = vt (u)du so that the Loewner chain becomes

dzt

dt
= 1

π

∫

R

vt (u)du

zt − u
. (2.9)

Hence 1
π

∫
R

vt (u)du
z−u

plays the role of a time-dependent holomorphic vector field on
the manifold with boundary H. At point z = x + i0+ i.e. close to the real axis (the
boundary of H) this vector field has imaginary part −v(x), so that when x is away
from the support of ρt , (that is, when vt (.) = 0 in a neighbourhood of x), the vector
field is real, i.e. tangent to the boundary. However, if x is on the support of ρt the
vector field has a finite negative imaginary part, which means that some fluid parti-
cles that started inside H can be swallowed by the boundary. In fact Kt is nothing
but the set of fluid particles which where in H at t = 0 but have hit the boundary
before time t .

The reader is urged to review Examples 1–4 in this light. For the semi-disc case,
take r as time, either with b = 0 or with b = r . For the case of line segments, take a
constant b and use a as time. For the arc of circle, using ϑ as time, with special care
in the limit ϑ �→ π−. It is instructive to compute the measure ρt in each case and to
check that the above interpretation of Kt is correct.

Another, more abstract, geometric interpretation is also possible. Let N− be the
group of series of the form z+∑

m≤−1 gmzm+1 with real coefficients and convergent
for large z (the domain of convergence may depend on the series, so N− is made
of “germs”, and is in fact the group of germs of holomorphic functions fixing ∞
and with derivative 1 at ∞). In the same spirit, let O∞ be the space of germs of
holomorphic functions at infinity. We let N− act on O∞ by composition, γg · F :=
F ◦ g. Observe that γg1◦g2 = γg2 · γg1 so this is an anti-representation.
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Note that the gt ’s of a Loewner chain with bounded Kt belong to N−. If F ∈ O∞
and if z is large enough, F(z) is well defined as well as F(zt ) for small t (where the
meaning of small may depend on z and F ) and

dF(zt )

dt
= 1

π

∫

R

dρt (u)

zt − u

∂F

∂z
(zt ),

which can be rewritten

d

dt
(γgt · F) = γgt · (vt · F)

where vt (z) := 1
π

∫
R

dρt (u)
z−u

∂
∂z

is a germ of vector field.
So the Loewner chain equation can be viewed as a flow on N−

d

dt
γgt = γgt · vt .

The group N− has an interesting representation theory, related to that of the Virasoro
algebra, which can be used as a probe for this flow.

2.3.7 Local Growth

Suppose that as time goes by the measures ρs are δ-peaks of height 2πas (the fac-
tor 2 is purely historical) at position ξs : in physicist notation dρs(u) = 2πasδ(u −
ξs)du. In the upper half plane reference geometry, the growth process will be de-
scribed by an equation of the type

∂gs(z)

∂s
= 2as

gs(z) − ξs

. (2.10)

Note that Examples 2–4 fall in this category. The formula was given for Exam-
ple 4 if s = ϑ and the other cases lead to simple computations left to the reader.

If one is interested only in the growth of the hull, but not in the way the evolution
is parameterised, one can make change the time variable without arm. The statement
that ξs changes quickly or slowly makes sense only compared with the changes in as .
For instance, suppose that the function as vanishes in some interval, while ξs keeps
on changing so that it has a different value at the beginning and at the end of the
interval. During that interval gs has not changed but when as starts moving again,
the place at which the hull resumes growth can be far from the place where it was
growing before the pause. This is a limiting case of what happens when variations
of ξs are large with respect to those of as . This means that if, at s0, ξs starts to move
very fast with respect to as , the growth takes place very near Ks0 or the real axis.
This conclusion is supported by Example 3.

We also infer that to have local growth, i.e. to have the position where the hull
grows vary continuously, we need to impose that ξs stops if as does. To make this
statement precise, it is convenient to go to a special time parameterisation. The
capacity of the hull at time s is CKs

= 2
∫ s

0 ds′ as′ , a non-decreasing function of s.
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Define t = ∫ s

0 ds′ as′ , take t to be the new time variable and by abuse of notation
write ξt for ξs(t), Kt for Ks(t) and so on. Then by construction CKt

= 2t and the
equation reads

∂gt (z)

∂t
= 2

gt (z) − ξt

. (2.11)

We take as a definition of local growth that ξt is continuous function of t . The
function ξt is often called the driving function of the Loewner evolution. It is some-
times convenient to normalise ξt by ξ0 = 0 or what amounts to the same to impose
that the hull starts growing from point 0.

A broad class of growing hulls that can be described by such an equation is
given by continuous simple curves started on the boundary of H and staying in H

thereafter. Let γ[0,∞] be a parameterised simple continuous curve from 0 to ∞ in H

and assume that the capacity parameterisations has been chosen, so that Kt := γ]0,t]
is a hull with capacity 2t . When ε is small, Kε,t := gt (γ]t,t+ε]) is a tiny piece of a
curve. The support of the discontinuity measure dρfε,t is small and becomes a point
when ε goes to 0. Measures supported at a point are δ functions, so there is a point
ξt such that, as a measure, dρfε,t /dx ∼ 2εδ(x − ξt ) as ε → 0+.

For a general local Loewner growth process, one defines γt = ft (ξt + i0+) :=
limε �→0+ ft (ξt + iε) (remember ft is the inverse map of gt ). We shall often use the
shorthand notation γt = ft (ξt ). The set γ]0,t] := ⋃

s∈]0,t] γs is called the trace of the
growth process. If the hull is a simple curve, the notation is consistent. Whether the
trace is a curve (simple or not) in general is highly non-obvious, but this will be the
case for all examples in these notes, though proving it can be a formidable task.

At time t , growth takes place at point ξt in the gt plane i.e. at point γt in the
original “physical” plane. Thus it is tempting to conclude that Kt coincides with
γ]0,t]. Though this picture works nicely for Examples 2–3, it is slightly too naïve
and fails in Example 4 when the trace, which is an arc of circle closes to a semicircle
and the corresponding semi-disc completes the hull.

For a given z with Immz ≥ 0 and z �= ξ0, the local existence and uniqueness
of solutions to Eq. (2.11) is granted by general theorems on ordinary differential
equations, but problems may arise if a time τz (depending on z in general) exists for
which gτz(z) = ξτz . One possibility is to declare gt (z) undefined for t ≥ τz. But it
is often the case that, as suggested by Examples 2–3, the two limits limx �→ξ±

τz
gt ◦

fτz(x) exist, allowing to think that after τz, gt (z) has split in two real trajectories.
There is a regularity criterion on the function ξ. that guaranties that if x �= ξ0 is

real, τx is infinite. It is sufficient that for each t ,

lim
s �→t−

sup
t ′∈[s,t[

|ξt − ξt ′ |
|t − t ′|1/2

< 4. (2.12)

To prove this criterion, it is convenient to consider Xt := gt (x) − ξt , a continuous
function which satisfies the integral equation Xt = x − ξt + ∫ t

0
2 ds
Xs

. As this implies

that ξτ − ξt = Xt − Xτ + ∫ τ

t
2 ds
Xs

, we can see ξ. as a functional of X.. The task is to
control its behaviour if Xt has a given sign, say positive, on [0, τ [ and vanishes at
τ . It is clear that the two terms in Xt + ∫ τ

t
2 ds
Xs

vary in opposite directions, in that
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Fig. 2.15 The hull at time τ for α = 0,1,2,3,4,5,6

the faster Xt goes to 0, the slower is the vanishing of
∫ τ

t
2 ds
Xs

at t = τ . So the mildest
behaviour of the sum as t goes to τ is when the two terms have a similar behaviour.
A detailed analysis requires some care, but a quick and dirty way to retrieve the
criterion is to impose that the two terms be equal, which gives Xt = 2

√
τ − t hence

ξτ − ξt = 4
√

τ − t as announced.

Example 6 (Square root driving term) The Loewner equation when ξτ − ξt =
4α

√
τ − t can be solved in closed form for any α though the formulæ are cum-

bersome. We normalise ξt so that ξ0 = 0, i.e. take ξt = 4α(
√

τ − √
τ − t). By left-

right symmetry, we can assume that α ≥ 0. For α ∈ [1,+∞[ it is convenient to set
α := coshη, η ∈ [0,+∞[. One parameterises time as

2e−η cothη sinhη

sin(2ϑ sinhη)

(sin(ϑeη))(cothη+1)/2

(sin(ϑe−η))(cothη−1)/2
=

√
τ − t

τ
,

with ϑ ∈ [0,πe−η]. As a function of ϑ , the hull builds the curve
{

2
√

τ

(
e−η − 2 sinhη sin(ϑe−η)

sin(2ϑ sinhη)
eiϑeη

)}

ϑ∈[0,πe−η]
.

For ϑ = πe−η the curve closes a whole domain, just as in the arc of circle Exam-
ple 4, which in fact is the special case α = 3

√
2.

For α ∈ [0,1[ it is convenient to set α := cosϕ, ϕ ∈ ]0,π/2]. The formulæ can
be obtained by analytic continuation η �→ iϕ, this time with a parameter ϑ ∈ [0,∞].
The hulls remain simple curves even for ϑ = ∞.

Figure 2.15 illustrates the different behaviours.
The very same criterion on the behaviour of the function ξ. is also sufficient

to ensure that the hull Kt is a simple continuous curve, say {γs, s ∈ ]0, t]}, and
γt = ft (ξt ), i.e. that our naïve expectation Kt = ⋃

s∈]0,t] fs(ξs) is fulfilled.
The two properties—“gt (x) for real x does not hit ξt ” and “the hull is a simple

curve”—are in fact equivalent. The intuitive reason is the following. The fact that
gt (x) for real x hits ξt at some time τ is the sign that at time τ the hull “swallows
a whole piece of H”. The previous example illustrates this relationship when the
hull hits the real axis. But from the point of view of iteration, if s ≥ 0 is fixed, it is
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Fig. 2.16 A curve hitting
itself or the real axis a
number of times

obvious that when t ≥ 0 varies the function g̃t,s(z) := gt+s ◦fs(z+ ξs)− ξs satisfies
the Loewner equation (2.11) with driving function ξ̃t := ξt+s − ξs . So if the driving
function ξ̃t := ξt+s − ξs leads to a hull hitting the real axis, the driving function ξt

leads to a hull hitting itself or the real axis, as illustrated in Fig. 2.16. This discussion
also explains why, if the trace is a continuous curve, it can have double points but
no crossings.

2.4 Stochastic Loewner Evolutions

Stochastic Loewner evolutions were introduced by Schramm in 1999 as a general
framework to study random curves satisfying certain properties. His specific interest
was to prove that loop-erased random walks on a two-dimensional lattice have a con-
formally invariant continuum limit. Schramm observed that these walks have on the
lattice the so-called domain Markov property (to be defined below) a property that
can be rephrased in the continuum. Though he was not able at that time to prove the
existence of a conformally invariant limit of loop-erased random walks, he recog-
nised that conformal invariance and the domain Markov property brought together
would have remarkable consequences, and was able to prove that the probability
measures on random curves in the continuum satisfying at the same time conformal
invariance and the domain Markov property formed a one-parameter family. Crucial
to the proof and the explicit description of these measures was the idea of viewing
curves as hulls and to use Loewner evolutions. That in this context the most useful
description of a curve is by encoding it into a growth process via a Loewner chain
is at first sight very surprising and may explain why physicists who had understood
the importance of conformal invariance to study many examples of random curves
in the early 1980’s failed to “produce Schramm’s argument before Schramm”.

The general idea is to impose properties relating different members in a fam-
ily of probability measures on continuous curves without crossings, but possi-
bly with multiple points. Let us note that curves here are considered modulo re-
parameterisations, but not simply as subsets of the plane. For simple curves, this
would essentially make no difference, but curves with multiple points require more
care.

In the discrete setting, it is a fact that interfaces on appropriate lattices are simple
curves, so why bother to deal with non-simple curves? The answer is that even if at
the scale of the lattice spacing the interface is simple, when one tries to take a con-
tinuum limit by looking at a macroscopic scale while taking a smaller and smaller
lattice spacing, a curve that makes a large excursion and then comes back close to
itself, say a few lattice spacings away, has a double point from the macroscopic
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Fig. 2.17 A percolation
sample

viewpoint. While in some models—like loop-erased random walks, Schramm’s ini-
tial motivation—the interface remain simple when the lattice spacing gets smaller,
some other models—like percolation—clearly exhibit multiple points in the contin-
uum limit. This is clearly seen on samples, see Fig. 2.17.

In the following three sections, we suppose that we are given a family of prob-
ability measures {PD,a,b} indexed by triples consisting of a domain D and two dis-
tinct boundary points a, b of D. For a given triple (D, a, b), PD,a,b is a measure on
ΩD,a,b , the set of continuous curves without crossings within D—the union of D
and its boundary (in the refined sense alluded too in Sect. 2.3.1)—joining a to b (it
is understood that a and b are not multiple points).

First, we want do define what it means for the family {PD,a,b} to be conformally
invariant and to have the domain Markov property.

2.4.1 Conformal Invariance

By Riemann’s theorem, if (D, a, b) and (D, a′, b′) are any two triples, there is a
conformal map g : D �→ D

′ such that g(a) = a′ and g(b) = b′. It is clear that g in-
duces a bijection, which we call ǧ, from ΩD,a,b to ΩD′,a′,b′ . Conformal invariance
of the family {PD,a,b} is the statement that ǧ is measurable and the image measure
PD,a,b ◦ ǧ−1 coincides with PD′,a′,b′ , i.e. if C′ is a measurable subset of ΩD′,a′,b′
then ǧ−1(C′) is a measurable subset of ΩD,a,b and PD,a,b(ǧ

−1(C′)) = PD′,a′,b′(C′).
Conformal invariance by itself is a rather weak constraint. Indeed, suppose that

a probability PD0,a0,b0 on ΩD0,a0,b0 has been defined for a single triple D0, a0, b0

and that it is invariant under the conformal transformations of D0 fixing a0 and
b0. Such transformations form a group with one real parameter. Then the direct
image PD0,a0,b0 by any conformal transformation g will define unambiguously
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Pg(D0),g(a0),g(b0). By the Riemann mapping theorem, this defines PD,a,b for any
triple, and the resulting family of probabilities is clearly conformally invariant.

To get a more rigid situation, one has to impose another constraint on the family
{PD,a,b}. Schramm translated in the continuum a property that holds for loop-erased
random walks in the discrete setting: the domain Markov property, to which we
turn our attention now.

Before doing so, let us remark that this strategy is rather typical. If continuous
curves without crossings are replaced by general hulls joining a to b in D the notion
of domain Markov property does not make sense but another one, restriction, turns
out to be fruitful and allow for another complete classification. We shall have little
to say about these nice “restriction measures” in these notes.

2.4.2 Domain Markov Property

Fix a triple (D, a, b) and consider an element γ ∈ ΩD,a,b . If a real continuous pa-
rameter along γ is given and s is any intermediate value of the parameter, the past
and the future of s split γ in two (not necessarily disjoint) curves without cross-
ings. The curve corresponding to the past of s starts at a and is called an initial
segment of γ . The curve corresponding to the future of s ends at b and is called a
final segment of γ . The final segment starts at some point c ∈ D which is also the
end of the initial segment. We use the notation γ]a,c] for such an initial segment with
point c included and γ]c,b] for the final segment. Beware that the notation is a bit
ambiguous, because of possible multiple points on γ .

Several curves γ ′ share the same initial segment γ]a,c], and the discussion that
follows focuses on the question: if an initial segment is given, what is the distribution
of the final segment?

Making sense of this question is not so obvious. First, there should be enough
measurable sets in ΩD,a,b . We shall for a while assume that this is so. But even in
that case, the event “γ ′ starts exactly with γ]a,c]” is more than likely to occur with
probability 0. Vaguely, what may have a non-trivial probability is the event “γ ′ has
an initial segment that is close (in some quantified sense) to γ]a,c]”. Probabilists have
invented so-called conditional expectations and regular conditional probabilities just
to deal with that kind of situations. Starting from PD,a,b this allows to define new
probability measures, denoted PD,a,b( |γ]a,c]), read “conditional probability given
the initial segment γ]a,c]”, that can be manipulated just as conditional probabilities
when the state space is discrete.3

The set of points in D that cannot be joined to b by a continuous curve in D

without hitting the initial segment form a set that we call a hull4 and denote by Kc .

3There is a small price to pay, however. For instance, the definition of this conditional probability
may fail or be ambiguous for certain γ]a,c] but these nasty initial segments form altogether a set of
probability 0 for PD,a,b .
4If (D, a, b) = (H,0,∞), this is consistent with our initial definition, and with the new definition,
conformal maps send hulls to hulls.
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This notation is again slightly ambiguous. Note that D \Kc is again a domain. If the
initial segment is γ]a,c], the final segment starts at c and never enters inside Kc . So
the support of the conditional probability PD,a,b( |γ]a,c]) is included in ΩD\Kc,c,b .
But on this set we have another probability measure, namely PD\Kc,c,b , and the two
can be compared.

We say that a set {γ]a,c]} of curves in D without crossings starting at a is a set of
distinct representatives if any curve in ΩD,a,b has exactly one of its initial segments
in {γ]a,c]}. For instance, for the triple (H,0,∞), the initial segments whose associ-
ated hull has capacity t form a set of distinct representatives. Intuitively, to get the
expectation of a random variable on ΩD,a,b , one can compute its conditional expec-
tation on γ]a,c], and then integrate over γ]a,c] in a system of distinct representatives.

The family {PD,a,b} is said to have the domain Markov property if, for any
triple (D, a, b), one has

PD,a,b( |γ]a,c]) = PD\Kc,c,b, (2.13)

except maybe for a set of initial segments whose intersection with any system of
distinct representatives is of measure 0 for PD,a,b .

This expression of the domain Markov property is more intuitive on the lattice
in the discrete setting—because the interfaces are simple curves and because con-
ditional probabilities have a much simpler definition—and it holds in many exam-
ples. It is vaguely related to the notion of locality in physics. The reader can check
it straightforwardly for the exploration process. Equation (2.4) makes the domain
Markov property plain for loop-erased random walks as well, whereas a direct proof
using the original definition is more cumbersome.

2.4.3 Schramm’s Argument

Our aim is to explore the interplay between conformal invariance and the domain
Markov property of the family {PD,a,b}.

First, by conformal invariance, we may concentrate on the triple (H,0,∞). We
choose a parameterisation of curves in ΩH,0,∞ in such a way that the hull Kt := Kγt

associated with the initial segment γ]0,t] := γ]0,γt ] of γ ∈ ΩH,0,∞ has capacity 2t .
Because of the underlying continuous curve γ , the growth of Kt is local, and the
associated gt satisfies a Loewner equation ∂gt (z)

∂t
= 2

gt (z)−ξt
for some continuous

function ξt . The probability PH,0,∞ on ΩH,0,∞ induces a random process on the set
of initial segments γ]0,t], hence on the set of hulls Kt , and on the set of continuous
functions ξt .

Our next aim is to derive consequences for the stochastic process ξt of the domain
Markov property and conformal invariance.

First for fixed (H,0,∞) there is a remnant of conformal invariance: dilatations.
Hence for λ > 0, the hull 1

λ
Kλ2t must have the same distribution as a Kt . The cor-

responding Loewner map is 1
λ
gλ2t (λz), whose driving function is 1

λ
ξλ2t . Hence the

processes ξt and 1
λ
ξλ2t have the same law. We say that ξt has dimension 1/2.
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Given Kt , the domain Markov property states that γ]t,∞] is distributed according
to PD\Kt ,γt ,∞. The conformal transformation gt (z) − ξt maps D \ Kt to H, γt to
0 and ∞ to ∞. By conformal invariance, gt (γ]t,∞]) − ξt is distributed according
to PH,0,∞. In particular for s ≥ 0 gt (γ]t,t+s]) − ξt has the same distribution as a
γ]0,s] hence is independent of γ]0,t]. But the Loewner map for gt (γ]t,t+s]) − ξt is
gs+t ◦ ft (z + ξt ) − ξt (remember ft is the inverse of gt ), whose driving function is
ξt+s − ξt . We infer that the random function ξ· is such that for any t, s ≥ 0, ξt+s − ξt

is independent of {ξt ′ }, t ′ ∈ [0, t] and distributed like a ξs .
To resume our knowledge, the random process ξ· has continuous samples, inde-

pendent identically distributed increments and dimension 1/2. By a deep general
result, a random process with continuous samples and independent identically dis-
tributed increments is of the form

√
κBt + ρt for some non-negative κ and some

real ρ. Obviously it has dimension 1/2 if and only if ρ = 0.
To conclude, Schramm’s argument shows that if a family of probabilities {PD,a,b}

on curves without crossing indexed by triples (D, a, b) is conformally invariant and
has the domain Markov property, the law induced by PH,0,∞ on initial hulls of
capacity 2t by is described by a stochastic Loewner evolution

∂gt (z)

∂t
= 2

gt (z) − √
κBt

(2.14)

for some κ ≥ 0 and some normalised Brownian motion Bt . This process is often
denoted by SLEκ .

A priori, this does not show that each κ is realised via some family {PD,a,b}
(because the Loewner evolution deals wit hulls, not with curves).

2.4.4 Basic Properties

The first important property is a kind of converse to Schramm’s result. If κ ≥ 0 is
a real number, and Bt a continuous realisation of a normalised Brownian motion,
a deep theorem states that the trace associated to the stochastic Loewner evolution
equation (2.14) is almost surely a continuous curve joining 0 to ∞. This curve
is simple and stays in H if κ ∈ [0,4], has double points and hits the real axis if
κ ∈ ]4,8[ and is space filling if κ ∈ [8,+∞[.

At the time Schramm introduced stochastic Loewner evolutions, this very hard
theorem was not known (he contributed to prove it later).

As explained before, a continuous trace cannot have crossings. Thus for any
κ ≥ 0, the stochastic Loewner evolution defines a probability measure Pκ on contin-
uous curves without crossings joining 0 to ∞ in H. This measure is scale-invariant.
Hence, for each κ , conformal transformations can be used to define in a consistent
way a family of probabilities {Pκ

D,a,b
}. This family is trivially conformally invariant,

and it is easy to check that is satisfies the domain Markov property.
This finishes the complete classification.
Taking the existence of a curve for granted, the change of behaviour from simple

curves to curves with double points at κ = 4 can be understood as follows. First, the
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necessary condition (negation of Eq. (2.12)) for the existence of multiple points is
fulfilled for all values of κ , though in some kind of marginal way, for if ξt = √

κBt

where Bt is a normalised Brownian motion, the law of the iterated logarithm states
that, with probability one

lim
s �→t−

sup
t ′∈[s,t[

|ξt − ξt ′ |
|t − t ′|1/2 ln ln |t − t ′|−1

= √
2κ.

So the stochastic Loewner source is wilder by a ln ln |t − t ′|−1 than the criterion.
The fact that for κ ≤ 4 the Loewner trace is a simple curve shows that, as should
be expected, the criterion is only necessary, but not sufficient. Intuitively, Brownian
motion is more singular than necessary, but for κ ≤ 4 with too little correlation time
to behave consistently for long enough periods to produce multiple points.

This fact is related to another well studied question: recurrence of Brownian mo-
tion. If space dimension D = 1, Brownian motion passes infinitely many times at
any point. If D = 2, it passes infinitely many times in the any neighbourhood of any
point, but not exactly at any given point, and if D ≥ 3, it has a non-zero probabil-
ity to remain at a given finite distance of any point. So dimension 2 is somehow a
marginal case. Now let Rt be the norm of a d-dimensional Brownian motion. As-
sume R0 > 0. One can show using stochastic calculus that Wt := −Rt + D−1

2

∫ t

0
ds
Rs

is a standard 1-dimensional Brownian motion. In this equation, D appears as an
explicit parameter, and one can reverse the logic: given a standard 1-dimensional
Brownian motion Wt what are the properties of Rt , called the d-dimensional Bessel
process in mathematics. Setting κ = 4/(d − 1) one sees that Xt := √

κ(Rt + Wt)

satisfies the equation dXt

dt
= 2

Xt−√
κWt

. This has two important consequences: first,
one can indeed retrieve Rt from Wt by solving a differential equation and second,
the Bessel process is essentially a stochastic Loewner evolutions but looking only at
the boundary of H. For general D, the Bessel processes behave with respect to vis-
its to 0 just like the recurrence properties of Brownian motion for integer d suggest:
the D-dimensional Bessel process hits the origin infinitely many times if D < 2, but
never if D ≥ 2. Equivalently, if κ ≤ 4, Xt − √

κWt never vanishes, but vanishes in-
finitely many times if κ > 4. But we already know that the vanishing of Xt −√

κWt

is the sign that the growing curve hits itself or the real axis.
Another very hard result is the fractal dimension: the measures Pκ

D,a,b
is concen-

trated on curves with fractal dimension min{1 + κ/8,2}.
Recently, two important conjectures on SLE have been proven.
One of them is reversibility. The treatment of random curves by a Loewner evo-

lution is quite asymmetric by definition. However interfaces between two points in
physics (i.e. in statistical mechanics models) quite generally make no difference be-
tween the two ends. So it was conjectured very early that interfaces generated by
an SLE process were reversible. One difficulty is with the parameterisation. Take an
SLE sample in H from 0 to infinity, parameterise it with capacity. Apply the trans-
formation z �→ −1/z and parameterise the inverse sample with capacity. Now any
point on the curve has two parameters attached to it. One of the troubles is that the
relationship between the two parameters is extremely wild. Anyway, reversibility is
now a theorem.
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The second one is duality. Take an SLEκ sample with κ > 4 and look at the
boundary of Kt . This is simple curve, and one can expect that its distribution is con-
formally invariant in some sense. So it is natural to ask if and how it fits in the SLE
framework. It was conjectured by physicists that it is related in some sense to an
SLE16/κ , and that in particular it has dimension 1 + 2/κ . Though this is correct, the
precise recent theorem that gives an explicit description involves non-trivial exten-
sions of SLE where the driving function is

√
16/κBt plus some rather complicated

drift terms.

2.4.5 Locality

Let us go back to percolation. Consider a domain D and three boundary points a, b, c

such that (D, a, b) and (D, a, c) are hexagonal domains with admissible boundary
conditions. On the boundary interval (b, c) the colours disagree. But both domains
share the same inner hexagons, and the percolation samples are the same. For each
configuration of inner coloured hexagons, it is clear that the exploration paths for
(D, a, b) and (D, a, c) coïncide until they hit the boundary interval (b, c) for the first
time. Hence the measures on interfaces stopped when they first hit (b, c) is the same
for (D, a, b) and (D, a, c).

One could even go further and consider two hexagonal domains with admissible
boundary conditions (D, a, b) and (D′, a, b′). Say that an hexagon in D∩D

′ is spe-
cial if it is inner for D but not for D′ or vice versa, or if it is a boundary hexagon
for both, but with a different colour. By an analogous argument, the distribution for
the exploration process started at a and stopped when it hits a special hexagon is the
same for (D, a, b) and (D′, a, b′). This is called the locality property.

The particular case when b = b′ and D
′ ⊂ D was mentioned before.

The notion of locality can also be formulated in the continuum. Let L be a hull
in D bounded away from a and b. To each curve in ΩD,a,b we can associate its
smallest initial segment that hits the boundary of L (we take this initial segment to
be the curve itself if it never hits L). These initial segments form a system Σ of dis-
tinct representatives both in ΩD,a,b and in ΩD\L,a,b . Thus both PD,a,b and PD\L,a,b

induce a probability measure on Σ . The property of locality is the statement that
these two measures coincide. In a more mundane way, if L is a hull in D bounded
away from a and b, the distribution of curves up to the first hitting of L are the same
in D and in D \L.

Stochastic calculus can be used to show that the family {Pκ=6
D,a,b

} is the only one
to have the locality property. Let us note that it is no surprise that a value of κ

satisfying locality is > 4. Indeed, if κ ≤ 4, the traces are simple curves that do not
hit the boundary. Then no trace touches L for PD\L,a,b , but hitting L for PD,a,b has
a finite probability if L is non-trivial, so that the supports of the two probability
measures induced on Σ are not the same.

Though the amount of mathematical machinery is significantly higher than in the
rest of these notes, let us give the outline of a computation that shows that only SLE6
can have the locality property.
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Fig. 2.18 The basic commutative diagram. (Left) Half plane, from 0 to infinity. (Right) Half plane,
from 0 to x

One compares stochastic Loewner evolution in H from 0 to ∞ to stochastic
Loewner evolution in H from 0 to x where x is any boundary point. By conformal
invariance, any map F from H to H sending 0 to 0 and ∞ to x is such that the
image measure PH,0,∞ ◦ F−1 is PH,0,x . We fix such an F . Uniformise SLE in the
upper half-plane from 0 to ∞ with trace γ[0,t] up to time t by ht : H\γ[0,t] → H in
the hydrodynamical normalisation:

dht (w)

dt
= 2

ht (w) − ξt

, ξt = √
κBt .

Let gt be the uniformising map gt : H\F(γ[0,t]) → H in the hydrodynamical nor-
malisation as above except that the time parameterisation is not at our disposal:

dgt (w)

dt
= 2at

gt (w) − ξ̃t

.

Finally let Ft :H → H be the map “closing the square”,

gt ◦ F = Ft ◦ ht .

The commutative diagram Fig. 2.18 summarises the situation.
Take the time derivative of gt ◦ F = Ft ◦ ht and afterwards substitute z for ht to

get

2at

Ft (z) − ξ̃t

= dFt(z)

dt
+ F ′

t (z)
2

z − ξt

.

Now Ft(z) is non-singular at z = ξt so that the pole on the right-hand side is can-
celled by a pole on the left-hand side:

2at

Ft (z) − ξ̃t

= F ′
t (ξt )

2

w − ξt

+ O(1) when w → ξt ,
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leading to ξ̃t = Ft(ξt ) and at = F ′
t (ξt )

2. Continuing the expansion one step further
yields

−atF
′′
t (ξt )/F

′
t (ξt )

2 = dFt

dt
(ξt ) + 2F ′′

t (ξt ) i.e.
dFt

dt
(ξt ) = −3F ′′

t (ξt ).

Now use Itô’s formula to get dξ̃t = d(Ft (ξt )) = (dFt )(ξt )+F ′
t (ξt )dξt + κ

2 F ′′
t (ξt )dt ,

i.e.

dξ̃t = F ′
t (ξt )dξt + (κ/2 − 3)F ′′

t (ξt )dt.

Let us analyse this equation naïvely. As usual in Itô’s theory, consider∫ t

0 F ′
u(ξu)dξu � ∑N−1

n=0 F ′
tn/N (ξtn/N )(ξt (n+1)/N − ξtn/N ). If ξ is known up to time

tn/N , the random variable F ′
tn/N (ξtn/N )(ξt (n+1)/N − ξtn/N) is Gaussian with mean

0 and variance F ′
tn/N (ξtn/N )2(κt/N). Note that the increments (ξt (n+1)/N − ξtn/N )

are all independent, and the scale F ′
tn/N (ξtn/N ) depends solely on the past. This

suggests that if we would count time with a different scale,
∫ t

0 F ′
u(ξu)dξu would be-

come a sum of independent Gaussian random variables, and by inspection the right
time scale is s(t) := ∫ t

0 F ′
u(ξu)

2 du. This hand-waving argument is in fact confirmed
by a theorem of Itô: if

√
κWs(t) := ∫ t

0 F ′
u(ξu)dξu then Ws is a standard Brownian

motion with parameter s. Setting ξ̂s(t) := ξ̃t we get that ξ̂s(t) := Ft(ξt ) so

dξ̂s = √
κ dWs + (κ/2 − 3)

F ′′
t (s)(ξt (s))

F ′
t (s)(ξt (s))2

ds.

Observe that the time change is also exactly the one needed to turn at = F ′
t (ξt )

2 into
the constant 1. So if we set ĥs(t) := gt we find

dĥs(w)

ds
= 2

ĥs(w) − ξ̂s

.

This is enough to conclude that SLEκ from 0 to ∞ is described by that same
equation as SLEκ from 0 to x if and only if κ = 6. As in the discrete case, this leads
to the fact that at κ = 6 (and for no other value of κ) the measures PH,0,x (resp.
PH,0,y ) on traces from 0 to x (resp. to y) induce the same measure on traces starting
and 0 and stopped when they hit the interval ]x, y[.

In the simple case at hand, one can prove straightforwardly that

F ′′
t (s)(ξt (s))

F ′
t (s)(ξt (s))2

= 2

ξ̃t − gt (x)
.

Defining X̂s := ĥs(x) we get finally:

dξ̂s = √
κ dWs + (κ − 6)

ds

ξ̂s − X̂s

,
dX̂s

ds
= 2

X̂s − ξ̂s

,

so what looked initially like a non-local stochastic differential equation is in fact a
local system of coupled stochastic differential equations.
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2.5 Relation with Conformal Field-Theory

In this section, we shall crudely outline the relation between SLE and CFT. The
discussion will be rather informal.

This is the only part of these notes were the author can claim to have made a
contribution.

2.5.1 Motivation

The starting point is the following. If gt is the Loewner map for SLE from 0 to ∞,
we define ht := gt − ξt . Then ht satisfies the stochastic differential equation

dht (z) = 2

ht (z)
dt − dξt .

We can rephrase this trivially by setting Zt := ht (z), so that

dZt = 2

Zt

dt − dξt , Z0 = z.

This describes the motion of particles in a time-dependent vector field v such that

v dt = dt
2

z
∂z − dξt ∂z.

For each n ∈ Z, the generator of the transformation z → z+εzn+1 is �n := −zn+1∂z

so that

v dt = −2�−2 dt + �−1 dξt .

Now, if we consider a function of Zt , say f , we can apply Itô’s formula (or any
of the techniques that are more familiar to physicists) to get the variation of the
expectation value of f (Zt ) namely

d

dt
E

(
f (Zt )

)∣∣∣∣
t=0

=
(

κ

2
∂2
z + 2

z
∂z

)
f (z).

The operator acting on the right-hand side is κ
2 �2−1 − 2�−2. Functions in the kernel

of this operator describe observables f (Zt ) with a time independent expectation,
which in this simple case are also examples of more general probabilistic objects
known as martingales.

But this differential operator is also well-known in conformal field-theory.

2.5.2 A Crash Course in Boundary CFT (BCFT)

The following is a totally unfair presentation of CFT. The first chapter in this vol-
ume, and references therein, should be consulted for any serious study.
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In CFT the operators �n = −zn+1∂z, which satisfy the following commutation
relations:

[�m, �n] = (m − n)�m+n, (2.15)

are represented by operators Ln which satisfy the Virasoro algebra vir:

[Lm,Ln] = (m − n)Lm+n + c

12
m

(
m2 − 1

)
δm+n;0 (2.16)

with the Virasoro central charge c, which commutes with all other generators (and
is often viewed simply as a scalar multiple of the identity, though this is strictly true
only in irreducible representations). The Virasoro algebra is a (in fact the only non-
trivial) central extension of the algebra (2.15). This means that for non-zero c the
quantum field-theory implements only a projective representation of the Lie algebra
(2.15) of infinitesimal conformal transformations.

The states of a CFT are organised5 in highest-weight representations of vir.
They are characterised by the facts that first, they possess a highest-weight vector
i.e. a vector |Δ〉 such that Ln|Δ〉 = 0 for n > 0 and L0|Δ〉 = Δ|Δ〉 and second,
all states in the representation of vir are linear combinations of states obtained by
acting on |Δ〉 repeatedly with Virasoro generators. The parameter Δ is called the
conformal weight of the representation.

Due to these conditions and the commutation relations, the most general state
in the representation is a finite linear combination of eigenstates of L0 of eigen-
value m + Δ for m = 0,1, . . . . An application of the Poincaré-Birkhoff-Witt the-
orem yields that these eigenstates with eigenvalue m+Δ can be written in the form
L−n1L−n2 . . .L−nk

|Δ〉 where n1 ≥ n2 ≥ . . . ≥ nk ≥ 1 and n1 + n2 + . . . + nk = m.
In generic cases, these states are linearly independent. This is always true in a cer-
tain type of representations called Verma modules (and this can be taken as a poor
man’s definition/characterisation). But for certain special values of the pair (c,Δ),
Verma modules contain submodules and the corresponding quotients still satisfy the
highest-weight condition. A bit more on this later.

In what follows, we shall mostly deal with boundary observables. To each state is
associated a boundary operator, and the boundary operator ϕΔ(x) associated to |Δ〉
for a CFT in the upper half-plane H (so that x ∈ R) is called a boundary primary
operator and satisfies

[
Ln,ϕΔ(x)

] =
(

xn+1 d

dx
+ Δxn

)
ϕh(x), (2.17)

which is the operator infinitesimal version of the rule ϕΔ(x) �→ ϕΔ(f (x))|f ′(x)|Δ
under a conformal transformation f from a domain to another one, with the proviso
that f should have a tangential derivative at the boundary point x. The state |Ω〉 is
associated to the identity operator, and |Δ〉 = ϕΔ(x)|Ω〉.

5This property of CFTs is in fact not general enough to cover all interesting cases, in particular
for the SLE-CFT correspondence. However, the author is not aware of a simple and fully general
definition of a CFT and decided to remain in the simplest setting.
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2.5.3 Martingales and Singular Vectors

If one elaborates on the crude discussion of the O(n) model in Sect. 2.2.2.3, one is
lead to conjecture that the interface is created by inserting some boundary changing
operators, say ψ sitting at the beginning and at the end of the interface. As noted
there, this does not really imply that one obtains in this way a “product of local
observables”. If 〈 〉 denotes the average in the system without interface, we expect
that the average of the observable O in the presence of an interface joining points a

and b on the boundary will be

〈O〉a,b := 〈Oψ(a)ψ(b)〉
〈ψ(a)ψ(b)〉 . (2.18)

This formula has the correct covariance properties under conformal transformations
if and only if ψ transforms in a homogeneous way, i.e. is a density associated to
some highest weight in a representation of the Virasoro algebra. We would like to
understand which one.

The crucial observation is the following: if one computes the average of O for
a fixed position of the interface and then averages over the position of the interface
with the correct measure, one retrieves 〈O〉a,b . In the case when the interface is
described by a growth process like SLE, this can be rephrased by saying that ob-
servables are functionals of the Loewner flow whose average is time-independent.
Together with the domain Markov property, this means that these functionals are
martingales. The discussion in the last section gives a detailed proof of this state-
ment on the lattice.

The simplest functional has been considered above and leads to consider the
kernel of κ

2 �2−1 − 2�−2.
So the natural question is: is it possible to have

(
κ

2
L2−1 − 2L−2

)
|h〉 = 0?

The answer is that it may occur if and only if

c = (6 − κ)(3κ − 8)

2κ
= 1 − 6

(κ − 4)2

4κ

and Δ = 6−κ
2κ

.
One can make this heuristic discussion more rigorous and get:

• SLEs with parameter κ describe interfaces in CFTs of Virasoro central charge

cκ = (6 − κ)(3κ − 8)

2κ
= 1 − 6

(κ − 4)2

4κ
. (2.19)

Notice that cκ is always less than 1 and is invariant under the duality κ ↔ 16/κ .
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• The boundary conformal operator ψ(x) implementing the change of boundary
condition at the point on which the interface emerges has scaling dimension6

Δ1;2 = 6 − κ

2κ
. (2.20)

It is a Virasoro primary operator degenerate at level two. In the CFT literature,
this operator is often denoted by ψ1;2.

The notation makes references to the so-called Kac’s labels (r; s) which pa-
rameterise an important family of representations, with conformal weight Δr;s =
(κr−4s)2−(κ−4)2

16κ
. When r and s are positive integers, the corresponding Verma mod-

ule contains non-trivial submodules. For generic κ , there is only one submodule,
which is responsible for the fact that a CFT correlation functions of an operator
ψr,s corresponding to the quotiented Virasoro representation satisfies a differential
equation of order rs. The case (r; s) = (1;1) is the one of the identity operator. The
case (r; s) = (1;2) is at the heart of the SLE-CFT correspondence. When κ is a
rational number, some conformal weights can be written as Δr;s for different values
of (r; s), leading to a more complicated submodule structure and to Virasoro min-
imal models. Note that some non-degenerate pairs (r, s) play a role in the CFTs of
SLEs. For instance, a bulk operator with conformal weights (Δ0;n/2,Δ0;n/2) repre-
sents the insertion of n interfaces from a point in the bulk. In fact this is why, for
instance, 2 − 2Δ0;1 = (κ + 8)/8 is the fractal dimension of SLE (for κ ≤ 8). Note
that (0;n/2) is never in the Kac’s table, and n/2 is not even an integer for odd n.

2.5.4 Two Examples

2.5.4.1 Hitting Probability

If 0 < u < v, one can ask for the probability that an SLE trace from 0 to ∞ in H hits
[u,v], see Fig. 2.19. Denote this by p(u, v). Suppose we let the trace grow for a cer-
tain time t and ask, then, for the same probability. If the trace is described by gt (in
the hydrodynamical normalisation), by conformal invariance, this is p(gt (u) − ξt ,

gt (v) − ξt ). If this is averaged over the position of the trace up to time t , p(u, v) is
retrieved. Writing

d

dt
E

(
p
(
gt (u) − ξt , gt (v) − ξt

))∣∣∣∣
t=0

= 0

yields a partial differential equation, obtained again routinely either via Itô’s formula
or any method more familiar to physicists:

(
2

u
∂u + 2

v
∂v + κ

2
(∂u + ∂v)

2
)

p(u, v) = 0.

6For a boundary operator, the conformal weight is exactly the scaling dimension. Bulk operators
have (possibly different) left and right conformal weights. Their sum is the scaling dimension and
their difference is the spin.
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Fig. 2.19 Hitting
configuration

By scale invariance, p(u, v) depends only on the ratio u/v and inserting boundary
conditions shows that p(u, v) = 0 for κ ≤ 4, p(u, v) = 1 for κ ≥ 8. One also gets
an explicit formula for κ ∈ ]4,8[. Setting s = u/v,

1 − p(u, v) = s
κ−4
κ Γ ( 4

κ
)

Γ (κ−4
κ

)Γ ( 8−κ
κ

)

∫ 1

0
dσσ− 4

κ (1 − sσ )2 4−κ
κ .

On the CFT side, on finds that 1 − p(u, v) = 〈ψ1;2(∞)ϕ0(v)ϕ0(u)ψ1;2(0)〉 were
the operator ϕ0 is a primary operator of weight 0 and appropriate conformal blocks
are chosen. Starting from

(
κ

2
L2−1 − 2L−2

)
|ψ1;2〉 = 0, 〈ψ1;2|Ln = 0 for n = −1,−2, . . .

plus the commutation relations between Virasoro generators and primary operators
(2.17), it is a routine CFT computation to show, that 〈ψ1;2(∞)ϕ0(v)ϕ0(u)ψ1;2(0)〉
satisfies the same partial differential equation as the one obtained above by proba-
bilistic arguments. The boundary conditions are that it should take value 0 for u → 0
and value 1 at u → v. At least, this is what the probabilistic computation shows. To
motivate this from the CFT viewpoint, we argue as follows.

If the trace hits between u and v, gt (u) will be close to ξt for t close to the hitting
time, so that an OPE of ϕ0(gt (u)) with ψ1;2(ξt ) will be relevant. Due to the existence
of the null vector ( κ

2 L2−1 − 2L−2)|Δ1;2〉, only two conformal families are possible

in the OPE, one with dimension Δ1;2 = 6−κ
2κ

and one with dimension Δ1;0 = κ−2
κ

.
So

ϕ0(x)ψ1;2(0) � C1;2
(
ψ1;2(0) + O(x)

) + C1;0x
κ−4
κ

(
ψ1;0(0) + O(x)

)
.

As hitting is forbidden in 1 − p(u, v), we have to choose a channel which gives a
vanishing small contribution at small x, i.e. κ must be > 4 and we have to pick only
the ψ1;0 channel, i.e. C1;2 = 0. This fixes the correlation function up to multiplica-
tion by a constant.

On the other hand, if the trace does not hit between u and v, the first time it hits
after v, gt (u) and gt (v) will be close to ξt . But, as observed in the explicit examples
of hittings, when a trace hits the boundary, gt (u) and gt (v) come close to each other
at an even faster rate, so that an OPE between ϕ0(gt (u)) and ϕ0(gt (v)) is relevant.
This time, there is no a priori restrictions on the possible operators, but only two
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conformal families have a non-vanishing three point function with the two ψ1;2’s:
one with dimension Δ1;1 = 0 and one with dimension Δ1;3 = 8−κ

κ
. So one picks

only

ϕ0(x)ϕ0(y) � C1;1
(
1 + O(x − y)

) + C1;3(x − y)
8−κ
κ

(
ψ1;3(y) + O(x − y)

) + . . . .

Now one can check that if C1;2 = 0 and C1;0 �= 0 then C1;3 �= 0 as well, so the
correlation function is bounded only if κ < 8 (at κ = 8, their would be logarithms
in fact).

So the block structure is dictated by the operator product expansion. In this way,
the OPE encodes nicely the different phases of SLE: only for κ ∈ ]4,8[ is there a
non-trivial hitting probability, and hitting the boundary is represented by insertion
of the operator ψ1;3.

2.5.4.2 Partition Functions

As argued before, the partition function for chordal SLE in D from a to b (a and b

are two boundary points of D) is quite simple:

ZD(a, b) = 〈
ψh1,2(a)ψh1,2(b)

〉
D
.

To be sure, we should multiply the right-hand side by the partition function without
interface. This factor depends on D but plays no role in the following arguments
and we omit it. Conformal invariance relates correlation functions in different do-
mains: if g :D → D̃ is a conformal representation, one finds, using the behaviour of
boundary primary operators under conformal transformations:

〈
ψh1,2(a)ψh1,2(b)

〉
D

= 〈
ψh1,2

(
g(a)

)
ψh1,2

(
g(b)

)〉
D̃

∣∣g′(a)
∣∣Δ1;2 ∣∣g′(b)

∣∣Δ1;2,

where Δ1;2 = 6−κ
2κ

.

In particular, taking D = D̃ = H (the upper-half plane, a and b are real numbers
in that case) and g(z) = z−a

pz+(1−p)b−a
where p is an arbitrary real parameter, p �= 1,

one gets that
〈
ψΔ1,2(a)ψΔ1,2(b)

〉
H

= 〈
ψΔ1,2(0)ψΔ1,2(1)

〉
H
|a − b|−2Δ1;2 .

Taking D to be arbitrary again, but keeping D̃ = H one gets
〈
ψΔ1,2(a)ψΔ1,2(b)

〉
D

= 〈
ψΔ1,2

(
g(a)

)
ψΔ1,2

(
g(b)

)〉
H

∣∣g′(a)
∣∣Δ1;2 ∣∣g′(b)

∣∣Δ1;2

= 〈
ψΔ1,2(0)ψΔ1,2(1)

〉
H

∣∣∣∣
g′(a)g′(b)

(g(a) − g(b))2

∣∣∣∣

(6−κ)
2κ

.

As expected, these formulæ are singular if D is not smooth at a or b. However,
comparing the cases b = x and b = y, one is led to

ZD(a, y)

ZD(a, x)
= 〈ψΔ1,2(a)ψΔ1,2(y)〉D

〈ψΔ1,2(a)ψΔ1,2(x)〉D

=
∣∣∣∣
g′(y)(g(a) − g(x))2

g′(x)(g(a) − g(y))2

∣∣∣∣

(6−κ)
2κ

.
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This formula has two remarkable features:

• the normalising constants in the partition functions or in the two point functions
have cancelled between the numerator and denominator,

• the derivative g′(a) has cancelled between the numerator and denominator.

Hence, this formula is normalised in an absolute way and makes sense even if D
is not smooth at a. We want to apply it in such a situation.

Consider chordal SLE in H from 0 to x. Let D = Ht be the domain obtained by
removing from H the SLE hull with the SLE hull at time t , and let gt : Ht → H be
the uniformising map in the hydrodynamical normalisation, mapping the tip γt of
the SLE hull to ξt . Modulo some changes in notation, we have seen at the end of
Sect. 2.4.5 that

dξt = √
κ dBt + (κ − 6)

dt

ξt − gt (x)
,

dgt (x)

dt
= 2

gt (x) − ξt

, (2.21)

where Bt is a standard Brownian motion.
Taking a = γt (a point at which D = Ht is certainly not smooth) we obtain for

the ratio of partition functions:

ZHt
(γt , y)

ZHt
(γt , x)

=
∣∣∣∣
g′

t (y)(ξt − gt (x))2

g′
t (x)(ξt − gt (y))2

∣∣∣∣

(6−κ)
2κ

.

We claim that this is a martingale for SLE in H from 0 to x, i.e. for the stochastic
differential system of Eqs. (2.21). The proof is a good exercise with Itô’s formula
that we really recommend to the reader. Therefore we give some details. Note that
all factors in the ratio are real, so that the modulus is only fixing a possible sign.
Hence we can forget about the modulus in the computation. In the following we set
Xt := gt (x) − ξt and Yt := gt (y) − ξt .

As dgt (z)
dt

= 2
gt (z)−ξt

, taking the z derivative (denoted with a ′) yields

dg′
t (z) = −2g′

t (z)dt

(gt (z) − ξt )2
,

which gives

d
g′

t (y)

g′
t (x)

= −2(Xt − Yt )
g′

t (y)

g′
t (x)

(Xt + Yt )

X2
t Y

2
t

dt.

Also

d
(
ξt − gt (x)

) = dξt − dgt (x) = dξt − 2 dt

Xt

.

Now Itô’s formula yields

d
1

ξt − gt (y)
= −d(ξt − gt (y))

(ξt − gt (y))2
+ (d(ξt − gt (y)))2

(ξt − gt (y))3

= −dξt

Y 2
t

− (κ − 2)
dt

Y 3
t
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where we used Itô’s rule dB2
t = dt , dBt dt = dt dt = 0 to obtain (d(ξt − gt (y)))2 =

κ dt , a consequence of (2.21). Another use of Itô’s formula yields

d
ξt − gt (x)

ξt − gt (y)
= 1

ξt − gt (y)
d
(
ξt − gt (x)

) + (
ξt − gt (x)

)
d

1

ξt − gt (y)

+
(

d
(
ξt − gt (x)

)
d

1

ξt − gt (y)

)

= (Xt − Yt )

(
1

Y 2
t

dξt + −2Yt + (κ − 2)Xt

XtY
3
t

dt

)
.

Then

d

(
ξt − gt (x)

ξt − gt (y)

)2

= (Xt − Yt )

(
2Xt

Y 3
t

dξt + −4(Xt + Yt ) + κ(3Xt − Yt )

Y 4
t

dt

)
.

Putting all this together and setting St := g′
t (y)(ξt−Xt )

2

g′
t (x)(ξt−Yt )2 , we get

dSt = g′
t (y)

g′
t (x)

(Xt − Yt )

(
2Xt

Y 3
t

dξt + −6(Xt + Yt ) + κ(3Xt − Yt )

Y 4
t

dt

)
,

or better

dSt

St

= (Xt − Yt )

(
2

XtYt

dξt + −6(Xt + Yt ) + κ(3Xt − Yt )

X2
t Y

2
t

dt

)
.

Itô’s formula applied once again gives, for any exponent α

dSα
t

Sα
t

= α
dSt

St

+ 1

2
α(α − 1)

(
dSt

St

)2

.

Hence

dSα
t

Sα
t

= α(Xt − Yt )

×
(

2

XtYt

dξt + −6(Xt + Yt ) + κ(3Xt − Yt ) + 2κ(α − 1)(Xt − Yt )

X2
t Y

2
t

dt

)
.

Recalling that dξt = √
κ dBt + (κ − 6) dt

ξt−gt (x)
= √

κ dBt + (6 − κ) dt
Xt

, we get at
last:

dSα
t

Sα
t

= α(Xt − Yt )

(
2

XtYt

√
κ dBt + (κ(1 + 2α) − 6)(Xt − Yt )

X2
t Y

2
t

dt

)
. (2.22)

The drift term vanishes if and only if κ(1 + 2α) − 6 = 0, i.e. α = h1;2 = (6 −
κ)/(2κ). In particular, this proves that

ZHt (γt ,y)

ZHt (γt ,x)
= |St |h1;2 is a (local) martingale, i.e.

that its Itô derivative contains no drift term.
The fact that the drift term in dξt is (6 − κ) dt

Xt
is crucial, and our computation

shows that we could recover this drift term uniquely if we knew in advance that
ZHt (γt ,y)

ZHt (γt ,x)
is a martingale. Moreover, if we were to take α �= h1;2, Sα

t would be a



104 M. Bauer

martingale for no choice of drift term in dξt . These two properties should convince

us that the martingale property of
ZHt (γt ,y)

ZHt (γt ,x)
has little to do with chance.

In the next subsection, we give the fundamental (but totally elementary) reason
why ratios of partition functions (and in particular correlation functions) must be
martingales and give a precise meaning to this vague statement. A good part of the
argument relies on a very general tautological double counting argument which then
is specialised to the SLE-CFT correspondence.

To close this discussion, let us note that the above computation can be abstracted
as follows: The stochastic process

Rt = ZHt
(γt , y)

ZHt
(γt , x)

(2.23)

is a martingale if

d
(
gt (γt )

) = √
κ dBt + κ∂b

(
lnZH(a, b)

)∣∣
a=gt (γt ), b=gt (x)

dt. (2.24)

This equation which states that the drift is the variation of the free energy with
respect to a parameter is particularly nice, and in fact totally general. For instance,
it is at the heart of the definition of multiples SLEs.

2.5.5 Conformal SLE Martingales

In this last subsection, we explain why ratios of (conditional) partition functions of
models of statistical mechanics (and in particular correlation functions) are mar-
tingales for appropriate stochastic processes. This result is at the heart of the CFT
approach to SLEs as outlined in the previous section. We first give the argument,
which involves some technical hypotheses, and then motivate these hypotheses and
their consequences in the example of interfaces. To keep the discussion simple and
self-contained, we concentrate on finite or countable configuration spaces. Again,
we use some terminology from probability theory (σ -algebra, martingale, filtra-
tion, . . . ), but try to keep it to a bare minimum. We start with some general abstract
definitions.

Recall that a partition of a set C is a subset Q of 2C \ {∅} such that each x ∈ C
belongs to exactly one element of Q. We say that a partition Q′ is finer than a
partition Q, or equivalently that a partition Q is coarser than a partition Q′ if every
element of Q′ is a subset of an element of Q.

The link with measure theory is the following. To each partition Q of C we as-
sociate a σ -algebra F on C as follows: F is a subset of 2C , and an element of 2C

belongs to F if and only if it is a union (possibly empty) of elements of Q. One
checks immediately that F is indeed a σ -algebra, i.e. is stable under complementa-
tion and countable unions: if A ∈ F its complement Ac ∈ F , and is Ai ∈ F , i ∈ I

(a finite or countable set), then
⋃

i∈I Ai ∈ F . Note that one has stability under ar-
bitrary unions in that case, but this is not required for a σ -algebra. The fact that the
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partition Q′ is finer than Q reads as the inclusion F ⊂ F ′ at the level of associated
σ -algebras.

Which σ -algebras on C arise in this way? The answer is that if C is finite or
countable, all of them do, and there is a one to one correspondence between parti-
tions and σ -algebras. To go back from a σ -algebra F to a partition Q when C is
finite or countable, define an atom of F to be a non-empty element of F which
does not contain properly any other non-empty element of F . Then the atoms form
a partition of C (you can try to prove it).

We now introduce an index t (belonging to some ordered set (T ,≤), typically
T = Nn = {0,1, . . . , n}, T = N = {0,1, . . .} or T = R

+ = [0,+∞[) which will be
identified with “time”, and introduce a family (Qt )t∈T of partitions of C , which get
finer and finer as t increases. By convention Q0 is the trivial partition with C as its
single piece.

The family of σ -algebras (Ft )t∈T associated to the family of partitions (Qt )t∈T

is called a filtration of C : Fs ⊂ Ft for s ≤ t .
After this mathematical preliminary, we can turn to more familiar constructions

by assuming that C is the configuration space of a statistical model. Very often
one works with discrete variable in finite volume, and then C is discrete, and finite
or countable. That’s one of the reasons why physicists are not used to σ -algebras,
which are the appropriate tool to deal with general configurations spaces, but which
can be replaced by partitions as seen above for finite or countable configuration
spaces. So we assume that C is finite or countable for the rest of this discus-
sion.

Before we start, let us quote one famous instance where the above ideas are
used implicitly all the time: the renormalisation group. If C describes the con-
figurations of a spin system, one can partition C for instance by first partition-
ing “space” into blocks of spins, and then regrouping all configurations for which
the magnetisation of each block is given, but forgetting the other details inside a
block. Taking larger and larger blocks means taking coarser and coarser partitions
leading to a filtration, and increasing t means keeping finer and finer details of
small scales physics. The reader is invited to reinterpret the following construc-
tions (conditional expectations, . . . ) in terms of familiar concepts (effective ac-
tions, . . . ).

Let Wc, c ∈ C , be a family of Boltzmann weights on C . We assume that Wc ≥ 0
for each c and that Z := ∑

c Wc ∈ ]0,+∞[, so that P(c) = Wc/Z defines a proba-
bility on C .

To start with, let Oc, c ∈ C be an observable (that is, a map from C to R) and
assume that 1

Z

∑
c Wc|Oc| < +∞ which ensures that E(O) := 1

Z

∑
c WcOc , the

expectation of O with respect to P, is well defined. In probability theory, we would
say that O is a P-integrable random variable.

If D is a subset of c ∈ C and P(D) := 1
Z

∑
c∈D Wc > 0, one can do sta-

tistical mechanics on D : we define ZD := ∑
c∈D Wc = ZP(D) and ED (O) :=

1
ZD

∑
c∈D WcOc . This is a conditional expectation, and it looks trivial to physi-

cists because statistical mechanics uses all the time partition functions, i.e. non-
normalised but finite measures to compute probabilities.
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A bit more generally, if Q is a partition of C , with associated σ -algebra F , we
can define a new observable, denoted by E(O|F ) as follows. For each c ∈ C there
is a single D ∈ C such that c ∈ D . If ZD > 0, then E(O|F )c := ED (O). If ZD = 0,
give E(O|F )c an arbitrary value (but the same for all c ∈ D ). So E(O|F ) is still an
observable on C , but a coarse-grained one: its value on c depends only on the piece
of the partition to which c belongs, and is equal to the average of O on this piece.
Beware, the conditional expectation E(O|Q) is not a number. It is an observable,
which moreover has a nice characterisation: it is constant on every piece of Q and if
U is any (bounded, this is just to make sure that all formulæ are convergent) observ-
able on C which is constant on every piece of Q then E(OU) = E(E(O|F )U).
The reader should check that this is a characterisation. There is a small subtlety:
E(O|F ) is fully determined only on the pieces of D with non-vanishing partition
function; there can be several version of the conditional expectation, but they differ
only on a sets with 0 P-measure.

Now we use a filtration and define O(t) := E(O|Ft ) for t ∈ T . Then, a trivial
computation reveals that E(O(t)|Fs) = O(s) for s ≤ t ∈ T , i.e. (O(t))t∈T is a mar-
tingale. In fact, it is a special case of martingale, a closed martingale, because there
is an observable, O itself, such that O(t) := E(O|Ft ). This is the content of the
sentence “Observables, or correlation functions, are martingales”.

It is useful to go a bit further. Suppose that W̃c, c ∈ C is another family of Boltz-
mann weights on C , such that W̃c ≥ 0 for each c and that Z̃ := ∑

c W̃c ∈ ]0,+∞[.
Let P̃ and Ẽ be the corresponding probability measure and expectation.

Let Q be a partition of C and assume that for any piece D of Q either ZD > 0
or Z̃D := ∑

c∈D W̃c = 0. Then we can define an observable R on C as fol-
lows. For each c ∈ C there is a single D ∈ C such that c ∈ D . If ZD > 0 then

Rc = Z̃D
ZD

. If ZD = 0, give Rc an arbitrary value (but the same for all c ∈ D ).

If U is any P̃-integrable observable on C which is constant on every piece of
Q then RU is a P-integrable observable on C which is constant on every piece
of Q and Ẽ(U) = E(RU). This is expressed mathematically as follows (this is
mostly vocabulary): when coarse-grained down to Q, the measure P̃ is abso-

lutely continuous with respect to P, and the Radon-Nykodim derivative dP̃
dP is equal

to R.
Now, the case of a filtration. We assume that for any t ∈ T and any piece D of

the partition Qt , either ZD > 0 or Z̃D = 0. We define R(t) as before, as the ratio of
partition functions for w and W̃ on any piece of the partition Qt . Then R(t) is also

the Radon-Nykodim derivative dP̃
dP when both measures are coarse-grained down to

Qt . The following computation will show that E(R(t)|Fs) = R(s) for s ≤ t ∈ T ,
i.e. that (R(t))t∈T is a martingale. To show that R(t) is a martingale, we use the
above characterisation of conditional expectations.

We need to show that, if t ≥ s and if U is bounded and constant on every piece
of Qs , E(UR(t)) = E(UR(s)). When X is an observable on C which is constant
on a subset D of C , we write XD for the value of Xc when c ∈ D . We compute Z

(which is non-zero) times the right-hand side E(UR(s)). This is
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ZE
(
UR(s)

) =
∑

c∈C

UcR(s)cWc

=
∑

D∈Qs

∑

c∈D

UcR(s)cWc

=
∑

D∈Qs

UDR(s)D

∑

c∈D

Wc

=
∑

D∈Qs

UDR(s)DZD

=
∑

D∈Qs

UD Z̃D .

As t ≥ s, U is a fortiori constant on every piece of Qt and a parallel computation
yields

ZE
(
UR(t)

) =
∑

D∈Qt

UD Z̃D .

The two expression are equal. Indeed, Z̃D is an additive functional of D : its value
on a disjoint union is the sum of the values on each piece of the union. Use this to
compute

∑
D∈Qs

UD Z̃D by breaking each D ∈ Qs into its Qt pieces.

Were the support of W̃ included in that of W (i.e. if W̃c vanished for all c’s
for which Wc = 0), we could define an observable O by Oc = W̃c/Wc whenever
the denominator is non-zero and keep Oc arbitrary when Wc = 0. We would be
back to the case of observables: R(t) would simply equal O(t) and be a closed
martingale. But in general, R(t) is not a closed martingale. However, we get the
general principle “Ratios of partition functions are martingales”.

The above considerations look a little bit like abstract nonsense. So let us ap-
ply them to interfaces (say on a finite lattice domain to keep a finite or countable
configuration space). Suppose that to each configuration one can associate an inter-
face, and Ft gives a finer description of this interface as t increases, for instance by
describing completely larger and larger initial segments of the interface. Now one
can be interested in certain configurations c ∈ D (resp. D̃ ), which are specified by
some feature of the interface they contain (for instance starting point, end point,. . . ).
Then we consider weights Wc (resp. W̃c) which vanish outside D (resp. D̃ ). If the
possible initial segments of interfaces (at least for t up to a certain value) are the
same for D and D̃ , we get martingales by taking ratios of partial partition functions
as explained above.

Going to the continuum limit requires some care: the previous argument seems
to be closely related to the existence of Radon-Nykodim derivatives, which can be
tricky when taking the continuum limit. But when this is known, the fact that ratios
of partition functions are martingales is quite a powerful tool.

For instance, in the computation of locality, we obtained stochastic differential
equations allowing to compare chordal SLE from 0 to ∞ to chordal SLE from 0 to
a point x (say x > 0) at finite distance. Obviously the second measure on the full
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set of curves cannot be absolutely continuous with respect to the first because the
event to hit x has probability 0 for the first (at least if κ < 8) and 1 for the second.
However, the two measures are absolutely continuous with respect to each other
when coarse-grained to ignore what happens to a curve once it has hit the interval
]x,+∞[. We have already observed that the ratios of partition functions are (local)
martingales in that case.

2.6 Notes and References

For a very short overview of SLE, see [25]. The lectures notes [8] concentrate on
discrete models and Loewner chains. There are many reviews on SLE. Historically,
the first one is [27]. The reviews [18, 24] are a valuable source of information for
interfaces and SLE, but mostly seen from the CFT side. Reference [9] is a review
on growth processes, Loewner chains, SLE and CFT written by physicists, but with
a strong emphasis on probabilistic aspects.

Let us note that Loewner chains for certain models, for instance Laplacian
growth, are related to integrable systems, see e.g. [8, 9] and references therein.

The interpretation of extended objects in 2D critical phenomena in terms of log-
arithmic CFT is only starting, but some interesting approaches and results can be
found in [41] for crossing probabilities and [30] for SLE martingales.

The proof of convergence of the exploration process to a conformally invari-
ant continuum limit is announced in [47] and proved along rather different lines in
[15, 16].

The proof that the off-critical continuum percolation measure is singular with
respect to the critical continuum percolation measure can be found in [42].

The canonical self-avoiding walk puts the uniform measure on all lattice paths of
a given length. This model has proved remarkably difficult to tackle. Loop-erased
random walks are introduced in [32] as an example of walks which are self avoiding
but more tractable than the canonical self avoiding walk.

The seminal paper on SLE is [45], which dealt mainly with loop-erased random
walks. The existence a conformal invariance of a continuum limit of the loop-erased
random walk measure is proved in [38, 39].

The Riemann mapping theorem is proved in a number of textbooks, see e.g. [19].
Most proofs involve a good amount of functional analysis, related for instance to
the existence of the Green function of the Laplace operator with Dirichlet bound-
ary conditions. The deep relationship between the Laplace operator and Brownian
motion can be used to give a probabilistic proof of Riemann’s theorem, see e.g. [1].

The seminal paper on Loewner chains is [40]. A mathematical introduction to
Loewner chains can be found in [19], or with more details in [43].

Among the physicists works that inspired mathematical work, culminating in
SLE, one should quote Cardy’s percolation formula [17], and intersection exponents
[21]. Though physicists understood quite well conformal invariance for correlation
functions of local observables since 1984 [14], they had failed to find the axiomatic
framework describing conformally invariant measures on interfaces.
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After the seminal millennium paper by Schramm [45], Lawler, Schramm and
Werner embarked in an impressive series of contributions where they explored SLE
(locality, restriction, . . . ) but also its applications to a number of open problem like
intersection exponents, the dimension of the Brownian frontier, . . . see e.g. [33–39].

The proof that the SLE trace is a curve is surprisingly deep, especially at κ = 8,
see [44].

The proof that the Hausdorff dimension of SLEκ is min(1 + κ/8,2) is also very
tricky. The first proof appeared in [13].

The proof of duality of chordal SLE is in [48] and that of reversibility is in [49],
note also the nice (but inconclusive) approach in [31].

The seminal article on the SLE-CFT correspondence is [2]. Reference [22] deals
with κ = 8/3 i.e. the case when the SLE hull is a simple curve and the conformal
anomaly vanishes (c = 0).

The computation of the hitting probability (and others) via CFT techniques is ex-
plained in [3]. The relations between SLE martingales and the representation theory
of the Virasoro algebra is explained in [4, 6] and generalised in [29] (see also [30]
for applications to logarithmic CFT). Locality via CFT and partition functions is
explained in [6].

A better understanding of why SLE and CFT are related the way they are came
via the double counting argument explained in Sect. 2.5.5 in these notes. The case of
observables is explained in [10]. More games with partition functions, conditioning
and Girsanov’s theorem can be found in [12, 26, 46].

The relationship between other kinds of SLE’s (a subject not pursued in these
notes) and CFT is explained in [5, 7, 10].

Multiple interfaces (corresponding to an arbitrary number of changes in bound-
ary conditions) are described in [11, 20]. The first one insists a constraint called
commutation, while the second exploits partition function techniques. See also [23]
for a nice interpretation.

A very readable introduction to stochastic calculus is [28].
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Chapter 3
Numerical Tests of Schramm-Loewner
Evolution in Random Lattice Spin Models

Christophe Chatelain

3.1 Introduction

Schramm-Loewner Evolution (or Stochastic Loewner Evolution (SLE)) allows for
the construction of a family of non-intersecting and non-branching continuous two-
dimensional random curves by means of a local Markovian growth process. These
curves, called SLE traces, are fractal and their probability distribution is invariant
under conformal transformation. (Chordal) SLE depends on a single real positive
parameter denoted κ . By extension, the different families of random curves will be
denoted SLEκ . The continuum limit of some simple generalisations of the random
walk on a regular two-dimensional lattice is believed to be SLE traces. The paradig-
matic example is the loop-erased random walk (LERW) which is presented in
Fig. 3.1 and for which it has been shown that κ = 2 [34, 48]. One should also
mention percolation clusters whose boundaries are SLE6 traces [9, 45, 51] or the
Self-Avoiding Walk (SAW) that has been conjectured to be SLE8/3 [35]. These ex-
amples provide good reasons to believe that SLE traces can also be found in the
usual spin models of Statistical Physics, like the celebrated Ising [28], Potts [43], or
O(n) models. These models have in common to possess a representation in terms of
loops. Moreover, the Potts model reduces to percolation in the limit q → 1 and the
O(n) model to SAW when n → 0 and to LERW for n = −2. Furthermore, confor-
mal invariance holds for an infinite set of two-dimensional models, including Ising
and Potts models. Since at criticality spin clusters are fractal, with fractal dimen-
sion related to critical exponents [16, 53], one may infer that SLE traces might be
recovered as the continuum limit of interfaces between spin clusters. SLE would
thus offer a new description of these critical systems leading to new exact results
about models of Statistical Physics. For the pure Ising model, a rigorous proof that
critical curves are SLE traces with κ = 3 has been given by Smirnov [52]. However,
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Fig. 3.1 The black curve is
an example of a
non-intersecting and
non-branching continuous
curve obtained with the
following algorithm:
a random walk is generated
and each time the curve
touches itself, the loop that
has been formed is erased. In
grey are plotted the lattice
sites visited by the curve but
then erased because they were
belonging to a loop. This
model is known as the
loop-erased random walk and
has been shown to be
described by SLE2

for most of the models, no exact result is available and the best estimates of critical
exponents were provided by simulations. Numerical techniques are often the only
possibility to check whether a given critical curve may be described by SLE or not.
It is especially the case for random systems.

The goal of this review is to present numerical methods and results for lattice
spin models in the perspective of checking the validity of SLE. We shall first dis-
cuss the genesis of an interface in a critical lattice spin model and the algorithms
for its localisation. Different tests of SLE are then presented in the second section.
To illustrate the text, original data for the celebrated Ising model defined by the
hamiltonian

H = −J
∑

(i,j)

σiσj , σi ∈ {+1,−1} (3.1)

(with the usual nearest-neighbour interactions) and its generalisation, the q-state
Potts model

H = −J
∑

(i,j)

δσi ,σj
, σi = 0, . . . , q − 1 (3.2)

will be presented. It is not our aim here to give an exhaustive list of results for pure
models. Finally, tests of a possible description of interfaces in random systems by
SLE are presented and discussed in the last section.

3.2 Genesis and Localisation of the Interface

At the critical point, clusters of different spin states appear spontaneously and the
interfaces between them are fractal. However, most of them surround small clusters
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Fig. 3.2 On the left, example of an interface between two clusters of different spin states in the
Ising model. Each pixel is a spin and its colour (black or white) corresponds to one of the two
possible states. The interface is plotted in blue. Its existence is ensured by the boundary conditions.
On the right, only the interface is plotted

and therefore form closed loops unsuitable for a description by SLE. In the limit of
an infinite system, one cluster is expected to percolate, i.e. to span the whole lattice.
From the frontiers of this cluster, one could in principle determine curves joining
two points on two different boundaries of the system. In numerical simulations, we
have to face an additional problem: because of the finite size of the lattice, the per-
colating cluster may not be unique or may not exist at all! To ensure the existence
of a percolating cluster, a convenient way is to choose symmetry-breaking boundary
conditions. In the case of the Ising model for example, one can fix the spins to the
state +1 on one half of the boundary and −1 on the other half. The interface is the
continuous curve on the dual lattice that starts at the boundary and for which the two
spins at both sides have different states. An example of such an interface is given in
Fig. 3.2. It is important to note that closed loops around spin clusters are not taken
into account. Because of the construction of the interface, it necessarily ends at the
boundary. As a consequence, the SLE that might be obtained in the continuum limit
is the so-called chordal-SLE for which both starting and ending points are on the
boundary ∂D of the domain D.

We shall now discuss the localisation of the interface for a given spin configura-
tion. Spins σi are placed on the nodes i of the lattice. When two neighbouring spins,
say σi and σj are in the same state, we shall say that a bond is put on the lattice link
joining the two sites i and j . When σi �= σj , the link remains empty. Since it is al-
ways perpendicular to lattice links, the interface lies on the so-called dual lattice. An
example of such a dual lattice is shown as dashed lines in Fig. 3.3. By construction,
spins on both sides of the interface are in different states. It means that the interface
crosses only empty links. The algorithm for the construction of the interface could
be the following: start from one of the two empty links on the boundary of the lat-
tice. The tip of the interface moves along the link of the dual lattice perpendicular
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Fig. 3.3 Construction of the
interface on the hexagonal
lattice. The links of the
hexagonal lattice are depicted
as continuous lines. Spins are
the filled circles on the nodes
of the lattice. The two
colours, white or black of
these circles, correspond to
the two possible spin states of
the Ising model (±1). The
links of the dual lattice are
represented as dashed lines.
The interface is the bold red
line

to it. Arriving at the next node of the dual lattice, consider the set of links on which
the interface could continue its movement. Note that it cannot go backwards. On the
hexagonal lattice, the dual lattice is triangular so there are only two possible move-
ments left for the tip. For each one of these links of the dual lattice, consider the
spins on both sides of them. The tip has to choose the link for which the spins on
both sides are in different states. As can be seen in Fig. 3.3, only one of the possi-
ble links satisfies this condition. The interface is thus unambiguously defined. The
operation is repeated until the tip of the interface reaches the other boundary.

As mentioned above, the interface is unambiguously defined. It is not necessar-
ily the case for another lattice. It is in particular not the case for the square lattice.
As can be shown in Fig. 3.4, the dual lattice is a square lattice, too. It means that
the tip of the interface has now to choose in which direction to move among three
possibilities. For most of the spin configurations, only one direction points towards
an empty link of the lattice. It means that there are two bonds on the plaquette and
thus two empty links allowing the tip to enter and exit the plaquette. However, one
can imagine spin configurations for which there are four empty links. Consider for
example the spin configuration of Fig. 3.5. The tip is allowed to take any of the
three remaining directions but we have specified no rule for it to choose one of
them. The simplest rule one could imagine is to allow the tip to choose randomly
one of the three possible directions. It turns out that this rule introduces a system-
atic deviation in the fractal dimension of the interface [47]. Another rule has been
thus suggested: when the tip encounters a plaquette allowing for several possible
movements, it chooses always to turn on the left (or the right). This rule is called
left tie-breaking algorithm (or right tie-breaking algorithm). It has been checked
that the fractal dimension is correctly recovered with this algorithm [47]. However,
it does not guaranty that other quantities, left-passage probability for example, are
not affected by this choice The reader may wonder why we insist in using a square
lattice instead of a hexagonal one. The answer is that the square lattice is self-dual
while the hexagonal one is not (its dual is the triangular lattice). As a consequence,
the critical point is often known exactly on a square lattice but more rarely on the
hexagonal lattice.
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Fig. 3.4 Construction of the
interface on the square lattice.
The same conventions as in
Fig. 3.3 have been used for
links of the lattice and the
dual lattice and spins. The
interface is again the bold red
line. As explained in the text,
it is not unambiguously
defined: the dashed loop
could be considered part of
the interface

Fig. 3.5 A problematic spin
configuration on a square
plaquette for the construction
of the interface

To circumvent the difficulties related to the construction of the interface on the
square lattice, one can define it on the so-called medial lattice rather than on the
dual one. The medial lattice is a square lattice but rotated by 45◦ from the original
one. Its nodes lie at the centre of the links of the square lattice. Spins are at the
centre of plaquettes of the medial lattice. Only half of the plaquettes are occupied
by a spin. A direction is assigned to each link of the medial lattice. By convention,
one can choose to turn clockwise around each plaquette occupied by a spin. An
example of medial lattice is shown in Fig. 3.6. The algorithm for the construction
of the interface remains the same: the tip jumps from one node of the medial lattice
to the other one by following the links whose direction points outward. It can be
seen in Fig. 3.6 that at each nodes of the medial lattice, two links go inwards and
the two others outward. As a consequence, a tip has always only two possibilities
to leave a node. Its choice is made according to the spins on both sides of these two
links or equivalently by forbidding the tip to cross a bond of the original lattice. The
interface is unambiguously defined on the medial lattice.

Up to now, we have only considered the example of the Ising model. An ad-
ditional problem arises in models where spins are allowed to take more than two
states, typically for the Potts model with q > 2. To induce an interface, one may
use the same conditions as for the Ising model: spins are fixed in the state σ = 0 on
one half of the boundary and σ = 1 in the other half. It means for the q-state Potts
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Fig. 3.6 Construction of the
interface on the medial lattice

model that the q − 2 states σ = 2,3, . . . , q − 1 are not allowed on the boundary.
These boundary conditions will favour a large cluster of spins in the state σ = 0, for
example on the left of the lattice and a second one in the state σ = 1 on the right.
However, other clusters in states σ = 2,3, . . . , q − 1 may appear between these two
large clusters favoured by the boundary conditions. The interface cannot be defined
as the continuous curve with spins σ = 0 on the left and σ = 1 on the right. One may
use a less restrictive definition of the interface: for example, spins has chosen to be
in the state σ = 0 on the left but can be in any other state on the right of the interface.
In a sense, the problem has been mapped to an Ising model since from the point of
view of the interface, spins are in the state σ = 0 or σ �= 0. As discussed by Gamsa
and Cardy [24], the symmetry between the q − 1 states σ �= 0 must be preserved.
The boundary conditions should be defined in the following way: on one half of the
boundary, spins are fixed in the state σ = 0 while on the other half, they are free to
flip during the Monte Carlo simulations as long as they do not take the state σ = 0.
These boundary conditions were called Fluctuating Boundary Conditions. They
are equivalent to an infinite magnetic field +h on one half of the boundary and −h

on the other half with the interaction hamiltonian −h
∑

i δσi ,0. The mapping to an
Ising model is then complete and the interface is unambiguously defined on the dual
of the hexagonal lattice or on the medial lattice. An example for the 3-state Potts
model is presented in Fig. 3.7.

In the Potts model, interfaces may be defined not only between clusters in dif-
ferent spin states but also between Fortuin-Kasteleyn (FK) clusters [23]. These
clusters arise from a representation of the partition function in terms of bond con-
figurations instead of spin configurations. Loops surrounding these clusters on the
medial lattice appear naturally and play a central role in the equivalence of the Potts
model with a Coulomb gas. While interfaces between spin clusters suffer from dif-
ficulties, this is not the case for the interfaces between FK clusters. We assign a
bond variable bij ∈ {0;1} to each pair of neighbouring sites i and j . The partition
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Fig. 3.7 On the left, example of an interface between two clusters of different spin states in the
3-state Potts model with fluctuating boundary conditions. Each pixel is a spin and its colour (black,
white or red) corresponds to one of the three possible states. The interface is plotted in blue. On
the right, only the interface is plotted

function may be written

Z =
∑

{σ }
e
J

∑
(i,j) δσi ,σj

=
∑

{σ }

∏

(i,j)

[(
eJ − 1

)
δσi ,σj

+ 1
]

=
∑

{σ }

∏

(i,j)

[
1∑

bij =0

(
eJ − 1

)
δσi ,σj

δbij ,1 + δbij ,0

]
(3.3)

An FK bond bij = 1 freezes the relative state of the two spins σi and σj . In con-
tradistinction with the previously defined bonds between spins, the absence of FK
bond, i.e. bij = 0, does not put any constrain on σi and σj . The sum over the spin
configurations can now be performed:

Z =
∑

{bij }

(
eJ − 1

)∑
ij bij

∑

{σi }

∏

(i,j)

δσi ,σj
δbij ,1

=
∑

G={bij }

(
eJ − 1

)b(G)
qC(G) (3.4)

where b(G) = ∑
ij bij is the total number of (frozen) bonds of the bond configura-

tion G = {bij } (that we shall call graph in the following) and C(G) is the number
of independent clusters. This formulation allows for the generalisation of the Potts
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Fig. 3.8 On the left, example of an FK configuration. The bonds are represented as thick lines
between nodes. The interface lives on the medial lattice and cannot cross these bonds. On the
right, the fjords have been removed by first filling the FK cluster attached to the left part of the
boundary. The sites belonging to the cluster are depicted by a white circle while the others carry a
black circle. The same algorithm as for spin clusters is used to identify the interface, the so-called
external perimeter of the FK cluster

model to non-integer values of the number of states q . Setting p = 1 − e−J , we
emphasise the relation between this representation and percolation:

Z = (1 − p)−N
∑

G

pb(G)(1 − p)N−b(G)qC(G) (3.5)

where N is the total number of links of the lattice. Percolation is recovered in the
limit q → 1. Both Swendsen-Wang [56] and Wolff [58] cluster algorithms rely on
this representation of the partition function to accelerate drastically the Monte Carlo
dynamics. From a spin configuration {σ }, a bond configuration is easily obtained by
setting bij = 1 with probability p = 1−e−J if σi = σj and bij = 0 in any other case.
On the boundaries where the spins are fixed, the FK bonds are frozen to the value
bij = 1. A large FK cluster spans the lattice and it allows for the definition of an
interface. Since the algorithm presented above was constructed upon bond variables
(with the different definition bij = 1 if σi = σj ), no modification is necessary to find
the interface between FK clusters. The same subroutine may be used but supplied
with different bond variables for interfaces between spin and FK clusters. Finally, it
should be mentioned that FK clusters usually present fjords. Removing these fjords
give access to the so-called external perimeter of the cluster. To do this, one can
first recursively fill the FK cluster attached to the left boundary (in the context of
cluster algorithms, the cluster is said to be decorated) and then define bond vari-
ables in the same way than between spins. Figure 3.8 gives an example of external
perimeter.
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3.3 Numerical Tests of SLE Properties

3.3.1 Domain Markov Property

In the following, we shall denote a curve γ in a domain D of the complex plane C

joining the points a and b as

γ[ab] : t ∈ [0;+∞) ⊂ R −→ γ[ab](t) ∈ D ⊂ C (3.6)

with γ (0) = a and γ (∞) = b. As mentioned in the introduction, the case of chordal
SLE that we are interested in corresponds to a, b ∈ ∂D. The curve being random, a
probability distribution PD(γ[ab]) of a particular realisation γ[ab](t) can be a priori
defined. The curve inherits two main properties from SLE: conformal invariance
and Domain Markovian Property. The former will be discussed in the next sec-
tion. The latter means that for any curve γ[ac](t) in a domain D, joining the points
γ (0) = a and γ (1) = b and passing through a third point γ (t0) = c with t0 ∈ [0;1],
the conditional probability of the second part γ[cb] of the curve is identical to the
probability of the same curve in a domain where a cut has been made along the first
part γ[ac]:

PD(γ[cb]|γ[ac]) = PD\γ[ac](γ[cb]) (3.7)

This is the domain Markov property, which is believed to hold true for a lattice
spin model with short-range interactions. The argument is the following. On a lat-
tice, the interface is a set of links of the dual lattice. The probability of an interface
configuration is the sum of the Boltzmann weight over all possible spin configu-
rations compatible with this interface. To be more precise, we shall consider the
conditional probability PD(γ[ab]|{σ }) of the interface γ[ab] given that the system is
in the spin configuration {σ }. PD(γ[ab]|{σ }) takes the value 1 if the spin configu-
ration {σ } induces the interface γ[ab] and 0 otherwise. The probability of γ[ab] is
thus

PD(γ[ab]) =
∑

{σi }i∈D
PD

(
γ[ab]|{σ })PD

({σ }) =
∑

{σi }i∈D
PD

(
γ[ab]|{σ })e−H ({σ })/T

ZD

(3.8)

Note that we assume that the spins on the boundary of the domain D are fixed in
such a way that an interface is generated from a to b. The conditional probability
follows

PD(γ[cb]|γ[ac]) = PD(γ[ac] ∪ γ[cb])
PD(γ[ac])

=
∑

{σi }i∈D PD(γ[ac] ∪ γ[cb]|{σ })e−H ({σ })/T

∑
{σi }i∈D PD(γ[ac]|{σ })e−H ({σ })/T

(3.9)

Performing a cut along a given path, say γ[ac], on the dual lattice is equivalent to
remove the links that are perpendicular to this path and to fix the spins on both sides
of the path. Accordingly to the symmetry-breaking boundary conditions chosen to
generate the interface, the spins are fixed to different states on the left and on the
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right of the path. The Boltzmann weight on the domain D can be recovered simply
by reintroducing the weight of the missing links (i, j) ⊥ γac . In the case of the Ising
model, it reads

e−H /T = ZDPD

({σ }) = ZD\γ[ac]e
J

∑
(i,j)⊥γ[ac] σiσj

PD\γ[ac]
({σ }) (3.10)

and the conditional probability leads to

PD(γ[cb]|γ[ac]) =
∑

{σi }i∈D PD(γ[ac] ∪ γ[ac]|{σ })eJ
∑

(i,j)⊥γ[ac] σiσj
PD\γ[ac]({σ })

∑
{σi }i∈D PD(γ[ac]|{σ })eJ

∑
(i,j)⊥γ[ac] σiσj

PD\γ[ac]({σ })
(3.11)

The conditional probabilities PD(γ[ac] ∪ γ[cb]|{σ }) and PD(γ[ac]|{σ }) vanish unless
the spins take different values on both sides of the path γ[ac]. It implies that the sum
over all spin configurations {σi}i∈D can be restricted to those for which these spins
have been transferred to the boundary, i.e. {σi}i∈D\γ[ac] . It remains

PD(γ[cb]|γ[ac]) =
e
−J

∑
(i,j)⊥γ[ac] 1 ∑

{σi }i∈D\γ[ac]
PD(γ[ac] ∪ γ[cb]|{σ })PD\γ[ac]({σ })

e
−J

∑
(i,j)⊥γ[ac] 1 ∑

{σi }i∈D\γ[ac]
PD(γ[ac]|{σ })PD\γ[ac]({σ })

(3.12)

The exponential prefactors cancel and the denominator is equal to PD\γ[ac](γ[ac]) = 1
because the interface γ[ac] always exist in the domain D \ γ[ac]. We finally obtain
the Domain Markov Property (3.7).

The derivation depends crucially on the fact that the interactions are local. More-
over, it cannot be generalised to systems with quenched randomness. In the exam-
ple of the random-bond Ising model, Eq. (3.10) does not hold anymore because the
coupling constant J is then site-dependent and the Boltzmann weight needs to be
averaged over randomness. For both long-range interactions and random systems,
it may be interesting to test the Domain Markov Property (3.7). However, the diffi-
culty is that the dimension of the configuration space of the interface is extremely
large. It would be much too memory-consuming to try to construct a histogram of all
possible configurations during a Monte Carlo simulation. Partial tests are neverthe-
less possible, even though difficult. As far as we know, the Markovian property has
been tested only for Ising Spin Glasses [8] and the Random Field Ising Model [54].
These tests will be discussed in the last section.

3.3.2 Conformal Invariance

The second property of SLE is conformal invariance: the image under a conformal
transformation z → f (z) of any curve γ[ab] in a domain D is a curve (f ◦ γ ) in
f (D) joining the points f (a) et f (b) and its probability is the same as the original
curve γ[ab]. This is often expressed by the statement that the probability distribution
is invariant under any conformal transformation:

PD(γ[ab]) = Pf (D)

(
(f ◦ γ )[f (a)f (b)]

)
(3.13)
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which simply means that the probability transforms as a scalar under a conformal
transformation. Again, the number of possible configurations of the interface be-
ing extremely large, it is not possible to construct a histogram using Monte Carlo
simulations to test this relation in lattice spin models. However, one can check for
example that the probability to find the interface inside a subdomain U ⊂ D is in-
variant under conformal transformation:

PD(γ[ab] ⊂ U) = Pf (D)

(
(f ◦ γ )[f (a)f (b)] ⊂ f (U)

)
. (3.14)

For a given lattice spin model, a first and easier step may be to check that con-
formal invariance holds in the sense of CFT, i.e. that correlation functions of local
observables transform covariantly under conformal transformations:

〈
φ1(z1, z̄1) . . . φn(zn, z̄n)

〉 =
[

n∏

i=1

[
f ′(zi)

]Δi
[
f̄ ′(z̄i )

]Δ̄i

]

× 〈
φ1

(
f (z1), f̄ (z̄1)

)
. . . φn

(
f (zn), f̄ (z̄n)

)〉

(3.15)

Conformal-invariance predictions for the magnetisation profile or spin-spin corre-
lation functions for example can be checked in various geometries by applying the
appropriate conformal transformation. Among the most popular conformal transfor-
mations, the logarithmic transformation

f (z) = L

2π
ln z ⇔ f −1(z) = exp

(
2π

L
z

)
(3.16)

maps the infinite (or half-infinite) cylinder with perimeter L onto the plane (or half-
plane). Thermodynamical averages are efficiently computed in this geometry using
transfer matrices. The Cayley function

f (z) = 1

i

z − 1

z + 1
⇔ f −1(z) = 1 + iz

1 − iz
(3.17)

maps the half-disc onto the half-plane. Monte Carlo simulations are usually per-
formed in rectangular systems. The Schwarz-Christoffel transformation

f (z) = snK(k)z ⇔ f −1(z) = F(z, k)/K(k) (3.18)

(where sn is an elliptic function) maps the square domain [−1;1] × [0;2] onto the
half-plane (Fig. 3.9). The constant k is given by

k = 4

[∑+∞
p=0 e−2π(p+1/2)2

1 + 2
∑+∞

p=1 e−2πp2

]2

� 0.1716, (3.19)

K(k) � 1.582 is the complete elliptic integral of first kind and F(z, k) the incom-
plete elliptic integral of first kind. The Schwarz-Christoffel transformation can be
adapted to map rectangular domains onto the upper half-plane.

In the particular case of CFT minimal model, a connection has been made with
SLEκ [3, 4, 46], expressed in particular by the relation

c = (3κ − 8)(6 − κ)

2κ
(3.20)
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Fig. 3.9 Mapping of a square
lattice inside the square
domain [−1;1] × [0;2] onto
the half-plane by the
Schwarz-Christoffel
conformal
transformation (3.18). The
square corners are mapped
on the real axis at the points
±1 and ±1/k

between the central charge c and the SLE parameter κ . The pure q-state Potts model
with q ≤ 4 belongs to this class of CFT. The number of states q is known to be
related to the central charge by

q = 4 cos2
(

π

m + 1

)
, c = 1 − 6

m(m + 1)
(3.21)

As a consequence, one expects to observe SLEκ with the parameters

κ1 = 4

1 − 1
π

Arccos(
√

q/2)
, κ2 = 16/κ1 (3.22)

These two values are associated to the hull of Fortuin-Kasteleyn clusters and their
external perimeter [20]. The latter has been conjectured to behave as spin clusters.
Numerical estimates of the fractal dimension of both external perimeter of FK clus-
ters and of spin clusters are in excellent agreement [59].

Extensions to non-minimal CFTs, i.e. field theories with not only conformal sym-
metry but also some other ones, have been considered. Some results were obtained
for example in the case of the clock model which possesses a ZN additional sym-
metry and is related to parafermionic theories [40–42]. The Ashkin-Teller model,
whose critical behaviour on the self-dual line is described by the so-called orbifold
CFT, was shown to be incompatible with SLEκ for all points of this line apart from
the Ising and 4-state Potts model points [11].

3.3.3 Driving Function

Loewener’s main idea was that a curve γ in the upper half-plane H, could be studied
through the (conformal) uniformising map

gt : H−K −→ H (3.23)
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where K is the hull of the curve, i.e. the domain enclosing both the curve itself and
all regions inside closed loops formed when the curve touches itself. The image
gt (γ ) of the curve is on the real axis and its tip is sent to the origin: gt (γ (t)) = 0.
Under local growth of the curve, the uniformising map evolves as

dgt

dt
= 2

gt (z) − ξt

, g0(z) = z (3.24)

where the driving function ξt is the image of the tip γ[t,t+dt] under g−1
t . The fac-

tor two in the numerator comes from the hydrodynamics normalisation condition
gt (z) ∼

z→+∞ z. One can adopt the reverse point of view: given the driving function ξt ,

one can construct a curve γ (t) starting at O . The postulate of Markovian property
and conformal invariance implies that the driving function ξt should be Brownian:

ξt = a + √
κBt (3.25)

where Bt is standard Brownian motion with a vanishing average and a variance
equal to unity. Left-right symmetry implies a = 0 so that we are left with only one
parameter: the diffusion constant κ of the Brownian motion.

In the case of lattice spin models, SLE can be tested in the following way [7].
Given a spin configuration sampled by the Monte Carlo simulation, the interface
is constructed as a set of N lattice points {zi} with i = 1, . . . ,N . Since numerical
calculations are not performed in the half-plane, a first conformal transformation
(logarithmic map, Schwarz-Christoffel, . . .) has to be applied to map the geometry
used in the simulation onto the half-plane. The N points zi are then replaced by
complex coordinates in the half-plane. The idea is then to reconstruct the driving
function ξt iteratively. One consider the first step of the interface, i.e. from O to z1.
Using the Markovian property, the uniformising map is decomposed at

gt (z) = gΔt ◦ gt−Δt (z) (3.26)

The first map gΔt sends the first step of the interface onto the real axis, leaving thus
a curve made of N − 1 steps in the half-plane. Since the conformal transformation
that removes a vertical tip extending from z = x0 to z = x0 + iy0 is (see Fig. 3.10)

f (z) = x0 +
√

(z − x0)2 + y2
0 (3.27)

a popular choice is to take

gΔt (z) = Re(z1) +
√(

z − Re(z1)
)2 + (Im z1)2 (3.28)

which means that we decompose the segment joining O and z1 into first a horizontal
segment [0;Re z1] and then a vertical one [Re z1; z1]. Since the driving function ξt

is real, one reads ξt = Re z1 and to recover (3.24), the time increment should be
chosen as Δt = (Im z1)

2/4 (2Δt is the so-called capacity of SLE). One can check
that the derivative of gΔt with respect to Δt gives indeed (3.24). The conformal
transformation (3.28) must be applied to the N − 1 other points of the interface.
This algorithm is repeated N times. More details on this algorithm can be found for
example in Ref. [2]. The driving function ξt is averaged over a large number of spin
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Fig. 3.10 Mapping of a
square lattice by the
conformal transformation
(3.27) with the values x0 = 1
and y0 = 4. The vertical tip
extending from z = 1 to
z = 1 + 4i has been mapped
onto the real axis. The square
lattice around has been
stretched out to fill the gap

Fig. 3.11 Average square
displacement 〈ξ2

t 〉 of the
Brownian motion extracted
from the interface between
spin clusters in the pure Ising
model. The different curves
correspond to different lattice
sizes: L = 128, 160, 192,
224, 256, 384, 512 and 768
(from top to bottom)

configurations sampled by the Monte Carlo simulation. If the curve is SLEκ , one
expects the driving function ξt to be a Brownian motion without drift. It should be
checked that after averaging over a sufficient large number of spin configurations
(see Figs. 3.11 and 3.12)

〈ξt 〉 = 0,
〈
ξ2
t

〉 = κt (3.29)

One can also check that the even moments 〈ξ2n
t 〉 are compatible with a Gaussian

distribution for ξt . To be complete, the statistical independence of the driving func-
tion ξt at different times t should be tested. An efficient way to do this is to compute
the correlation functions of the increments ξt+Δt − ξt and check that they fall off
rapidly.

The algorithm presented above is slow. As will be discussed in the next section,
the number of points of the interface behaves as Ldf with the lattice size L. For
each point of the interface, a conformal map gΔt is determined and applied to all
remaining points. The CPU time required for this operation scales therefore as L2df .
On the other hand, a Monte Carlo iteration requires a whole sweep of the lattice and
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Fig. 3.12 Effective diffusion
constant κ computed by a
linear fit of 〈ξ2

t 〉 with t for the
interface between spin
clusters in the pure Ising and
the 3-state Potts models. The
dashed lines are the expected
theoretical values κ = 3 and
10/3

demands thus a CPU time scaling as L2. The spin configurations sampled by the
simulation being correlated, the number of Monte Carlo steps required to obtain
two statistically independent configurations is of the order of τ ∼ Lz where z is the
dynamical exponent at the critical point. As a consequence, the CPU time of the
Monte Carlo part of the code scales as L2+z. Using cluster algorithms, z is close to
zero and smaller than 2df − 2. The computation of the driving function becomes
rapidly the more time-consuming part of the code as the lattice size is increased.
To circumvent this problem, Kennedy has proposed an improved algorithm [31–
33]. Instead of applying the conformal map gΔt (z) (3.28) to all other points zj with
j > i when the point zi is removed, the conformal map is approximated by the
Laurent series

gΔt (1/z) = 1/z +
M∑

k=0

ckz
k (3.30)

where M is a cut-off that needs to be tuned. The coefficients ck can be stored and
manipulated by the computer. At each iteration the full uniformising map

gt = gΔtn(1/z) ◦ gΔtn−1 ◦ . . . ◦ gΔt1(1/z) (3.31)

is updated in the sense that (3.28) is composed with (3.30) and the result is put under
the same form as (3.30). The conformal transformation gt is applied only to the first
point to be removed.

3.3.4 Finite-Size Scaling of Length and Winding Number

The SLE trace being fractal, its length � is expected to scale in a domain of size L

as

� ∼ Ldf (3.32)
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Fig. 3.13 Finite-size scaling
of the length of the interface
between spin clusters in the
pure Ising model (◦) and the
pure 3-state Potts model (�)
and between
Fortuin-Kasteleyn clusters in
the pure Ising model (�) and
the pure 3-state Potts model
(�). Error bars are
represented

The fractal dimension df is related to the diffusion constant κ by [6, 45]

df = 1 + κ

8
(3.33)

for κ ≤ 8 while df = 2 for κ > 8. In Figs. 3.13 and 3.14, an example of numerical
determination of κ using Eqs. (3.32) and (3.33) is presented. Values in the literature
are reported in Table 3.1. One should remember that df is just a number. Measur-
ing df does not prove that SLE holds! However, if the central charge c is known,
the validity of Eq. (3.20) may be tested. Moreover, one can check that the fractal
dimension d ′

f of the external perimeter is 1 + κ ′
8 with κ ′ = 16/κ or equivalently

(df − 1)(d ′
f − 1) = 4. These tests have been performed for the Fortuin-Kasteleyn

random clusters by means of Monte Carlo simulations for integer values of the num-
ber of states [1] as well as for non-integer ones [25, 59]. Because they can cross and
branch, an infinite spectrum of fractal dimensions may be defined for the spin clus-
ters [18, 19].

The diffusion constant κ can also be extracted from the statistics of the wind-
ing number of the curve around long cylinders. When the cylinder is conformally
mapped onto the half-plane, the winding number is related to the polar angle. The
latter can be estimated as the sum of the angles between each pair of successive
edges that form the interface [57]. The variance of the winding number θ is ex-
pected to behave as 〈θ2〉 ∼ κ lnL. Example for the 2D Ising model can be found
in [47].

3.3.5 Left-Passage Probability

Schramm has shown that the probability that the curve γ (t) passes at the left of a
given point z = x + iy of the upper half-plane is given by the formula [49]

PLeft(z) = 1

2
+ Γ (4/κ)√

πΓ ((8 − κ)/2κ)

x

y
2F1

(
1

2
,

4

κ
,

3

2
,−x2

y2

)
(3.34)
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Fig. 3.14 Effective diffusion constants κ with respect to the smallest lattice size used during the
fit of the length of the interface with the lattice size L. The symbols correspond to the interface
between spin clusters in the pure Ising model (◦) and the pure 3-state Potts model (�) and between
Fortuin-Kasteleyn clusters in the pure Ising model (�) and the pure 3-state Potts model (�). The
dashed lines correspond to the expected values, resp. 3,10/3,16/3 and 24/5

Table 3.1 Fractal dimensions df and corresponding SLE diffusion constants κ of the interfaces
between spin clusters in the pure Ising and 3-state Potts models, according to [24]

Model df κ κ (Theory)

Ising 1.372(2) 2.976(20) 3

3-state Potts 1.399(2) 3.192(20) 10/3

where 2F1 is the hypergeometric function. It can be seen that the probability depends
only on x/y = cot θ , i.e. on the polar angle θ as demanded by dilatation-invariance
(Fig. 3.15).

Schramm’s formula (3.34) is particularly appropriate for a test by Monte Carlo
simulation. At each Monte Carlo simulation, the interface is first identified. The left
of the interface is then filled and for each site visited during the filling, the histogram
of the number of visit is updated. Instead of trying to interpolate the data P(x, y)

with Schramm’s formula PLeft(x, y), the square deviation

χ2(x, y) = [
P(x, y) − PLeft(x, y)

]2
, χ2 = 1

L2

∑

x,y

χ2(x, y) (3.35)

of the data with Schramm’s formula is computed for various values of κ and its
minimum is searched (see Fig. 3.16). Compatibility of the data with the Schramm
formula means that

√
χ2(x, y) is smaller than the error bar on the left-passage prob-

ability. Lattice effects manifest themselves close to the boundaries and especially at
the starting and ending point of the interface. The Schramm formula usually works
poorly there. However, Schramm’s formula allows for very accurate, and less sen-
sible to finite-size effects, estimates of κ because for each lattice size L, statistical
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Fig. 3.15 On the left, exact left-passage probabilities in the half-plane as a function of the po-
lar angle θ . The different curves correspond to different values of the diffusion constant κ . On
the right, average left-passage probability calculated numerically for the pure Ising model on a
256 × 256 square lattice

Fig. 3.16 Mean-square
deviation χ2 from the
Schramm formula for the
pure Ising model with respect
to κ . The different curves
correspond to lattices sizes
L = 64, 96, 128, 160, 192,
224, 256, 384, 512, and 768
(from top to bottom). For
comparison, the sum of the
quadratic error of the
left-passage probability on all
sites are represented as error
bars

Table 3.2 SLE diffusion
constants κ obtained from the
Schramm formula in the pure
Ising and 3-state Potts
models, according to [24]

Model κ κ (Theory)

Ising 3.018(7) 3

3-state Potts 3.275(20) 10/3

fluctuations are reduced when taking into account all points of the lattice. Example
of values of κ in literature obtained from the Schramm formula is given in Table 3.2.

3.4 SLE in Random Lattice Spin Models

As previously discussed, the question whether interfaces in random systems are SLE
traces or not, is still largely open. In particular, Domain Markov property does not
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hold trivially as for pure models and it is unclear why it should hold for random sys-
tems. Moreover, conformal invariance is broken for a particular disorder realisation
but may be restored after average over randomness. However, recent numerical sim-
ulations performed in the last five years provide evidences that interfaces in some
random systems, frustrated or not, may be SLE traces.

3.4.1 Random Potts Model

The random-bond Potts model is defined by the hamiltonian

H = −
∑

(i,j)

Jij δσi ,σj
, σi ∈ {0, . . . , q − 1} (3.36)

where the exchange couplings Jij are quenched positive random variables. On the
square lattice with the binary distribution

P(Jij ) = 1

2

[
δ(Jij − J1) + δ(Jij − J2)

]
(3.37)

self-duality arguments allow for the determination of the critical line:
(
eJ1 − 1

)(
eJ2 − 1

) = q, r = J1/J2 (3.38)

For q ≤ 4, the pure model (r = 1) displays a second-order phase transition with
q-dependent critical exponents. As already mentioned, to each value of the number
of states q correspond a CFT with a central charge going from c = 1/2 for q = 2
to c = 1 for q = 4. According to the Harris criterion [26], disorder coupled to
the energy density is marginally irrelevant for q = 2 and relevant for q > 2. An
expansion in powers of q − 2 of critical exponents for the random q-state Potts
model was determined by Renormalisation-group methods applied to the Coulomb
gas representation of the Potts model [17, 36, 37]. The values were later confirmed
by transfer matrix calculations [10, 29]. In the regime q > 4, the pure Potts model
displays a first-order phase transition which is smoothed by randomness and turned
into a continuous transition with non-trivial, q-dependent, critical exponents [13].

Numerical simulations provided evidences that conformal invariance is restored
in the continuum limit after suitable disorder averaging. As shown by transfer-
matrix calculations [10, 29], spin-spin correlation functions in the strip geometry
decay exponentially as expected in order to recover an algebraic decay in the in-
finite plan after the conformal map (3.16). The central charge was extracted from
the finite-size scaling of the free-energy density on the strip. If conformal symmetry
holds, the CFT behind the random Potts model cannot be a minimal one. Besides
conformal symmetry, the model is indeed expected to be invariant under permu-
tation of replicas [17, 36, 37] and the CFT is not unitary. As a consequence, the
relation (3.20) is not expected to hold in the case of the random Potts model. From
a purely numerical point of view, the central charge turned out to be very useful to
tune the disorder ratio r = J1/J2 in order to minimise the cross-over effects with the
pure and infinite-disorder fixed points. On square lattices, the conformal predictions
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Table 3.3 Fractal dimensions df and corresponding SLE diffusion constants κ of the interfaces
between Fortuin-Kasteleyn and spin clusters in the 3-state random Potts model, as determined from
renormalisation-group (RG) methods, transfer matrix calculations and Monte Carlo simulations,
according to [30]

Fortuin-Kasteleyn Spin clusters
df κ df κ

RG 1.61433 4.9146
Monte Carlo 1.614(3) 4.912(24) 1.401(3) 3.208(24)
Transfer Matrix 1.615(2) 4.920(16)

Fig. 3.17 Square deviation
χ2(x, y) between the
left-passage probability in the
random-bond 3-state Potts
model and the Schramm
formula (from [12])

for the magnetisation profile and spin-spin correlations functions have been tested
using Monte Carlo simulations [14, 15].

Renormalisation-group calculations were recently extended to the study of the
geometry of the critical curves in the regime q ≤ 4 [30]. The fractal dimension of the
interfaces between Fortuin-Kasteleyn clusters was predicted to be 1.61433 for the
random 3-state Potts model. This value was confirmed by finite-size scaling of the
average length of the interface computed by means of transfer-matrix calculations
and Monte Carlo simulations, see Table 3.3. Additionally, the fractal dimension of
the interface between spin clusters was estimated numerically. The two correspond-
ing values of κ are compatible with the relation κκ ′ = 16.

The Schramm formula for the left-passage probability was latter tested in a
square geometry [12] (see Figs. 3.17 and 3.18). A systematic deviation was ob-
served and interpreted as due to the fluctuating Boundary Conditions. Although
smaller, this deviation exists for the pure Potts model too. However, by restrict-
ing the calculation of the deviation to the region in the neighbourhood of the fixed
part of the boundary, the diffusion constant κ takes a value compatible with the one
found from the fractal dimension, both in the pure and random Potts model. In the
latter, the diffusion constant is estimated to be κ = 3.245(10).
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Fig. 3.18 Error bars on the
left-passage probability in the
random-bond 3-state Potts
model (from [12])

3.4.2 SOS Model on a Random Substrate

The two-dimensional Solid-On-Solid model (SOS model) on a disordered sub-
strate [21, 50] is defined by the Gaussian hamiltonian

H =
∑

(i,j)

(hi − hj )
2 (3.39)

where hi = di + ni is the total height at site i. The height of the substrate di is a
quenched random variable uniformly distributed in [0;1]. The degrees of freedom of
the system ni can take any integer values (positive or negative). This model displays
a phase transition between a rough high-temperature phase (with roughness w2 ∼
lnL) and a super-rough glassy phase (with roughness w2 ∼ (lnL)2). The system
is initially prepared with fixed boundary conditions n = 0. The ground state n0

i is
then numerically determined using a minimal cost flow algorithm. On one half of
the boundary, the height are then changed to ni = 1. The new ground state displays
an interface between a region where the ground state has not changed and a region
where it has been shifted, i.e. ni = n0

i + 1, due to the new boundary conditions.
Using the finite-size scaling of the average length of the interface, the fractal di-

mension was estimated to be df � 1.25(1) which implies κ � 2.00(8) according to
(3.33). However, the smallest deviation of left-passage probability to the Schramm
formula (3.34) is observed for κ � 4.00(1), for both a square domain and a half-
circle. The incompatibility of the two estimates led the authors to the conclusion
that the random SOS interface cannot be described by SLE.

3.4.3 Ising Spin Glasses

The Edwards-Anderson model of spin glasses is defined by the hamiltonian [22]

H = −
∑

(i,j)

Jij σiσj (3.40)

where the coupling constants Jij are quenched random variables that can take both
positive and negative values. The latter produce frustration in the system leading to
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the very slow dynamics characteristic of glasses. Popular choices for the probability
distribution of these couplings are the bimodal distribution ±J and the Gaussian
distribution. In dimension d = 2, the correlation length ξ is known to diverge at
zero temperature.

Although the inhomogeneous configuration of coupling constants Jij breaks con-
formal invariance, it seems to be restored as long as one consider average quantities.
A large-scale Monte Carlo simulation of the two-dimensional Ising spin glass (ISG)
provided evidences in that sense [2]. The shape of the lattice was chosen to be a
strip whose boundary conditions were chosen to be periodic in one direction, say
horizontal, and open in the other one, i.e. the vertical one. Two cuts are then made
vertically from the upper and lower boundaries (i.e. bonds are removed or equiva-
lently Jij are set to zero) leaving a slit of untouched bonds around the centre of that
column (see Fig. 1 of [2]). Since these cuts can be removed by a conformal transfor-
mation, the probability that the domain wall crosses n times the slit is the same that
the probability of crossing of any other column without cuts. To induce the domain
wall, a ground state spin configuration σ

(0)
i is first determined numerically and then

all coupling constants are flipped in one column, i.e. Jij → −Jij . Since there are two
ground states related by a global spin flip, in one part of the lattice the spins remains
unchanged after the operation, i.e. σi = σ

(0)
i , while in the other part, σi = −σ

(0)
i .

The domain wall is defined as the curve on the dual lattice separating the region
where σi = σ

(0)
i from the one where σi = −σ

(0)
i , i.e. as the curve crossing the links

between sites i and j for which σiσ
(0)
i = −σjσ

(0)
j . In contradistinction to previously

discussed boundary conditions, the ending points of the domain wall is not fixed in
this case. For this reason, the domain wall was said to be floating [8]. By means
of Monte Carlo simulations, the probabilities that the domain wall crosses n times
resp. the slit (p′

1(n) and another column p′
2(n)) were measured. The probabilities

of no-crossing, i.e. p′
1(0) and p′

2(0), converge very slowly only to the same value in
the infinite-lattice limit but the authors were able to conclude that the probabilities
are the same for an even number n of crossings. To test specifically SLE, the authors
extracted the driving function using the algorithm presented in Sect. 3.3.3. For suffi-
ciently small values of t , the variance 〈ξ2

t 〉 is linear (see Fig. 3.19) and allows for the
estimation of κ � 2.1, consistent with a previous estimate of df � 1.27 [27] for a
Gaussian distribution of couplings. By identifying the conformal weight that could
be compatible with this value, the authors suggested a relation between κ and the
stiffness exponent θ (describing the finite-size power-law behaviour of the energy
of the domain wall):

df = 1 + 3

4(3 + θ)
⇔ κ = 6

3 + θ
(3.41)

Note that the first equality (but not the second) holds for the SOS model on a random
substrate (even though the interface does not seem to be described by SLE for this
model) since the stiffness exponent is θ = 0 (ΔE ∼ lnL) and the fractal dimension
was estimated to be df � 1.25.

Further numerical tests of SLE in ISG were presented a few months latter [8].
The fractal dimension df = 1.28(1) was confirmed. More recent (and more precise)
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Fig. 3.19 Monte Carlo estimate of the variance of the driving function of a domain wall in the
two-dimensional Ising spin glass (from [2])

estimates are compatible with this value: 1.274(2) [38], 1.275 [39] and confirm
Eq. (3.41). Conformal predictions for the winding number of the floating domain
wall around long cylinders are reproduced by the data with a value of the fractal di-
mension compatible to the above estimate. Measurements of the left-passage prob-
ability were shown to be compatible with the Schramm formula with κ = 2.32(8)

(see Fig. 3.20). The boundary conditions were periodic in one direction (in the sense
that the spins on both sides of the boundary are chosen such that σiσj has the same
sign as Jij ) and anti-periodic in the other. Like in [2], the ending points of the do-
main wall are therefore not fixed but allowed to “float”. When the starting point of
the interface is fixed by changing a bond on the lower boundary, a slightly larger
value 2.85(10) is obtained from the Schramm formula.

The driving function ξt was extracted from Monte Carlo data and analysed. Be-
cause of the strip geometry and the boundary conditions, the domain wall is not
related to chordal SLE (discussed above) but to dipolar SLE [5]. In the latter, the
SLE trace is grown from a fixed point of the lower boundary and stops when hit-
ting the upper boundary for the first time. For this reason, the formulæ employed in
[8] to reconstruct the driving function differ from those presented above for chordal
SLE. The data is consistent with a Gaussian distribution of ξt and the analysis of the
even moments provided compatible estimates of the diffusion constant: κ = 2.24(8)

(floating domain wall) and 2.85(10) (fixed starting point). Correlations between in-
crements ξt+1 − ξt of the driving function were shown to decay quickly as expected
for an uncorrelated Brownian noise. All these tests provided strong evidences that
conformal invariance holds for ISG and that domain walls can be described by SLE
traces with κ � 2.3. However, the domain Markovian property seems not to be sat-
isfied in small systems while the test is inconclusive for larger ones.
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Fig. 3.20 Comparison of the left-passage probability with the Schramm formula in Ising spin
glasses. The data are plotted with respect to the polar angle (from [8])

The results presented above were obtained using a Gaussian distribution of the
coupling constants Jij . Numerical simulations in the bimodal case are more diffi-
cult because of the high degeneracy of the ground state. Using an exact optimisation
algorithm for small lattice sizes and a variant of Parallel Tempering Monte Carlo
simulation for larger ones, Risau et al. estimated the fractal dimension of the do-
main wall to be 1.279(4) for a Gaussian distribution of couplings and 1.323(3) for
a Bimodal one [44]. The left-passage probability was measured and the comparison
with the Schramm formula gave an estimate κ � 2.23 in the Gaussian case that is
compatible with the relation (3.33) and the estimate df � 1.279(4). However, the
data for the Bimodal case turned out to be fully incompatible with the Schramm for-
mula with κ � 2.584 given by (3.33) and the estimate df � 1.323(4). The relation
(3.41) does not hold (see Figs. 3.21, 3.22). This discrepancy remains unexplained.
As noted by the authors, the two distributions lead to different reaction of the ISG to
the introduction of anti-periodic boundary conditions (aPBC). With a Gaussian dis-
tribution, a single domain wall is induced, separating one part of the system where
spins have flipped and the part where they remained unchanged. In contradistinc-
tion, additional spin clusters are flipped without any energy cost in the Bimodal
case. They form closed loops that may be glued onto the domain wall. If no specific
procedure is applied to remove them, the numerical determination of the length of
the domain wall may be erroneous.

3.4.4 Random-Field Ising Model

The Random-field Ising model (RFIM) is defined by the hamiltonian

H = −
∑

(i,j)

σiσj −
∑

i

hiσi (3.42)



3 Numerical Tests of SLE 137

Fig. 3.21 Finite-size scaling
of the length of the domain in
the two-dimensional and
three-dimensional Ising Spin
Glass, for a Gaussian
distribution of coupling
constants (EAG) and a
bi-modal one (EAB)
(from [44])

Fig. 3.22 Comparison of the
difference of the left-passage
probability with the Schramm
formula with respect to the
polar angle, for the 2D and
3D Ising spin glass with a
Gaussian (EAG) or bi-modal
(EAB) distribution of the
coupling constants
(from [44])

where the local magnetic fields hi are quenched random variables, usually chosen to
be Gaussian with standard deviation denoted δ. In dimension d = 2, the ferromag-
netic order is destroyed at any temperature (the lower critical dimension is dc = 2).
The system remains paramagnetic and undergoes no phase transition. However, the
size of spin clusters diverges at zero temperature for a critical value h = hc(Δ) of
the random magnetic field.
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SLE has been tested recently for this model [55]. Ground states have been nu-
merically sampled using a fast minimum-cut/maximum flow algorithm. Interfaces
were induced by fixing spins at part of the boundaries. The Domain Markov Prop-
erty has been checked by comparing the left-passage probability obtained first in a
domain D with an average restricted to the spin configurations yielding an interface
along γ[ac] and second in a domain D \ γ[ac] with a cut along γ[ac]. The two prob-
abilities should be equal if Domain Markov Property holds. Numerical calculations
show a significant difference in the neighbourhood of the tip of γ[ac]. However, a
close inspection of the finite-size behaviour of this difference indicates a vanishing
in the continuum limit. The left-passage probability in the unit disk was shown to be
compatible with the Schramm formula with κ � 6.00(5) (like percolation). Cross-
ing probabilities of percolating clusters, finite-size scaling of the interface length
and variance of the driving function ξt corroborate this value. A bimodal distribu-
tion of the random fields has also been studied. In contradistinction to spin glasses,
the RFIM-data are in agreement with SLE predictions with κ = 6.
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Chapter 4
Loop Models and Boundary CFT

Jesper Lykke Jacobsen

4.1 Models and Transformations

The guiding principle of these lectures is to use a few simple models as exploratory
tools for presenting a whole range of exact techniques within two-dimensional CFT.

For that reason, we focus on two models with a particularly rich physical and
mathematical content: the Q-state Potts model and the O(n) model. In this first sec-
tion we shall see that these models can be formulated in several equivalent ways, in
terms of different degrees of freedom. Some of these degrees of freedom are defined
locally (spin, arrows, heights), and some are spatially extended objects (clusters,
loops). The extended degrees of freedom make manifest the geometrical content of
the underlying models, furnishing in the same time a range of concrete physical
applications and an intuitive picture of the long-range correlation that we aim at
describing.

From a physical perspective, these different formulations are linked by a series of
ingenuous transformations. On the mathematical side, the models admit an algebraic
formulation, and the various formulations are mirrored by the existence of different
representation of the same algebra. The algebra underlying the Potts model is the
celebrated Temperley-Lieb (TL) algebra, and the O(n) model is described by a close
cousin, which is the dilute TL algebra.

4.1.1 Potts Model

Let G = (V ,E) be an arbitrary graph with vertex set V and edge set E. The
Q-state Potts model is initially defined by assigning a variable σi , henceforth called
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a spin, to each vertex i ∈ V . Each spin can take Q different values, by convention
chosen as σi = 1,2, . . . ,Q. We denote by σ the collection of all spin variables on
the graph. Two spins i and j are called nearest neighbours if they are incident
on a common edge e = (ij) ∈ E. In any given configuration σ , a pair of nearest-
neighbour spins is assigned an energy −J if they take identical values, σi = σj . The
Hamiltonian (dimensionless energy functional) of the Potts model is thus

H = −K
∑

(i,j)∈E

δ(σi, σj ), (4.1)

where the Kronecker delta function is defined as

δ(σi, σj ) =
{

1 if σi = σj

0 otherwise
(4.2)

and K = J/kBT is a dimensionless coupling constant (interaction energy).
The thermodynamical information about the Potts model is encoded in the par-

tition function

Z =
∑

σ

e−H =
∑

σ

∏

(ij)∈E

eKδ(σi ,σj ) (4.3)

and in various correlation functions. By a correlation function we understand the
probability that a given set of vertices are assigned fixed values of the spins.

In the ferromagnetic case K > 0 the spins tend to align at low temperatures
(K � 1), defining a phase of ferromagnetic order. Conversely, at high temperatures
(K � 1) the spins are almost independent, leading to a paramagnetic phase where
entropic effects prevail. On physical grounds, one expects the two phases to be sep-
arated by a critical point Kc where the effective interactions between spins become
long-ranged.

For certain regular planar lattices Kc can be determined exactly by duality con-
siderations. Moreover, Kc will turn out to be the locus of a second-order phase
transition if 0 ≤ Q ≤ 4. In that case, the Potts model enjoys conformal invariance
in the limit of an infinite lattice, allowing its critical properties to be determined
exactly by a variety of techniques. These properties turn out to be universal, i.e.,
independent of the lattice used for defining the model microscopically.

4.1.1.1 Fortuin-Kasteleyn Cluster Representation

The initial definition (4.1) of the Potts model requires the number of spins Q to
be a positive integer. It is possible to rewrite the partition function and correlation
functions so that Q appears only as a parameter. This makes its possible to assign
to Q arbitrary real (or even complex) values.

Notice first that by (4.2) we have the identity

eKδ(σi ,σj ) = 1 + vδ(σi, σj ), (4.4)
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Fig. 4.1 (a) A planar graph G (black circles and solid lines) and its dual graph G∗ (white cir-
cles and dashed lines). (b) The medial graph M (G) = M (G∗). (c) The plane quadrangulation
Ĝ = M (G)∗

where we have defined v = eK − 1. Now, it is obvious that for any edge-dependent
factors he one has

∏

e∈E

(1 + he) =
∑

E′⊆E

∏

e∈E′
he, (4.5)

where the subset E′ is defined as the set of edges for which we have taken the term
he in the development of the product

∏
e∈E . In particular, taking he = vδ(σi, σj ) we

obtain for the partition function (4.3)

Z =
∑

E′⊆E

v|E′| ∑

σ

∏

(ij)∈E′
δ(σi, σj ) =

∑

E′⊆E

v|E′|Qk(E′), (4.6)

where k(E′) is the number of connected components in the graph G′ = (V ,E′),
i.e., the graph obtained from G by removing the edges in E \ E′. Those connected
components are called clusters, and (4.6) is the Fortuin-Kasteleyn cluster repre-
sentation of the Potts model partition function. The sum over spins σ in (4.3) has
now been replaced by a sum over edge subsets, and Q appears as a parameter in
(4.6) and no longer as a summation limit.

4.1.1.2 Loop Representation

We now transform the Potts model defined on a planar graph G into a model of
self-avoiding loops on a related graph M (G), known in graph theory as the medial
graph. Each term E′ in the cluster representation (4.6) is in bijection with a term
in the loop representation. The correspondence is, roughly speaking, that the loops
turn around the connected components in G′ = (V ,E′) as well as their elementary
internal cycles. More precisely, the loops separate the clusters from their duals.

To make this transformation precise, we first need to define the medial graph
M (G) = (Ṽ , Ẽ) carefully. Let G = (V ,E) be a connected planar graph with dual
G∗ = (V ∗,E∗). The pair (G,G∗) can be drawn in the plane such that each edge
e ∈ E intersects its corresponding dual edge e∗ ∈ E∗ exactly once, see Fig. 4.1a. To
each of these intersections corresponds a vertex ĩ ∈ Ṽ of M (G).

Consider now the union G ∪ G∗. This is in fact a quadrangulation of the plane.
Each quadrangle consists of a pair of half-edges and one vertex from G, and a pair
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Fig. 4.2 Square and triangular lattices (black solid lines) with their corresponding medial lattices
(red dashed lines)

of half-edges and one vertex from G∗. These two pairs of half-edges meet in a pair
of vertices from Ṽ . An edge of M (G) is drawn diagonally inside each quadrangle,
joining the pair of vertices from Ṽ . This defines the edge set Ẽ and completes the
definition of the medial graph. An example is shown in Fig. 4.1b.

It is manifest in these definitions that G and G∗ are used in a completely symmet-
ric way. Thus, a graph and its dual has the same medial graph, M (G) = M (G∗).
Moreover, it is easy to see that every vertex of M (G) has degree four.1

The medial of the square lattice is another (tilted) square lattice. The medial
of the triangular lattice (or of its dual hexagonal lattice) is known as the Kagomé
lattice. These two medial lattices, shown in Fig. 4.2, are particularly important for
subsequent applications.

To each term E′ in appearing in the sum (4.6) we now define a system of self-
avoiding loops that completely cover the edges of M (G). Let ĩ ∈ Ṽ be a vertex
of M (G) and write its adjacent (half) edges from E, E∗ and Ẽ in cyclic order
as ẽ1eẽ2e

∗ẽ3eẽ4e
∗. Now if e ∈ E′, link up the half-edges of Ẽ in two pairs as

(ẽ4ẽ1)(ẽ2ẽ3). Conversely, if e ∈ E \E′, we link (ẽ1ẽ2)(ẽ3ẽ4). Note that we do not al-
low the non-planar (crossing) linking (ẽ1ẽ3)(ẽ2ẽ4). The set of linkings at all vertices
Ṽ defines the desired system of loops.

In concrete terms, this definition means that the loops bounce off all edges E′
and cut through the corresponding dual edges. The complete correspondence is il-
lustrated in Fig. 4.3.

To complete the transformation, note that the number of loops l(E′) is the sum of
the number of connected components k(E′) and the number of independent cycles
c(E′):

l
(
E′) = k

(
E′) + c

(
E′). (4.7)

Inserting this and the topological identity

k
(
E′) = |V | − ∣∣E′∣∣ + c

(
E′) (4.8)

1This implies that the dual of M (G) is a quadrangulation Ĝ, which is however different from the
quadrangulation G∪G∗. See Fig. 4.1c. The Potts model admits yet another representation, namely
as a height model—or RSOS model—on Ĝ.
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Fig. 4.3 (a) A subset E′ ⊆ E (thick black solid lines) and its complementary subset (E′)∗ ⊆ E∗
(thick black dashed lines). (b) The corresponding system of self-avoiding loops on the medial
graph (blue curves)

in (4.6) we arrive at

Z = Q|V |/2
∑

E′⊆E

x|E′|Ql(E′)/2, (4.9)

where we have defined x = vQ−1/2.
This is the loop representation of the Potts partition function. It importance

stems from the fact that the loops, their local connectivities (called linkings in the
above argument), and the non-local quantity l(E′) all admit an algebraic interpreta-
tion within the Temperley-Lieb algebra.

4.1.2 O(n) Model

The O(n) model is defined initially by associated with each vertex i ∈ V of a regular
planar lattice G = (V ,E) a vector spin Si ∈R

n of unit length, |Si |2 = 1. It turns out
convenient to absorb in the integration measure a factor n/Ωn, where Ωn is the
surface area of the unit sphere in R

n. Thus, if Sα
i and S

β
i are components of a vector

spin Si , we have the basic integration rule
∫

dSi S
α
i S

β
i = δ(α,β). (4.10)

The partition function of the O(n) model is defined by

Z =
∫

S

∏

(ij)∈E

e−V (Si ,Sj ), (4.11)
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Fig. 4.4 Allowed vertices in
the O(n) model on the
hexagonal lattice

where we have introduced a short-hand notation for the integration over all spins
∫

S
:=

∏

i∈V

(∫
dSi

)
(4.12)

and V (Si ,Sj ) is some scalar potential describing the interaction between Si and Sj .
In most texts on the O(n) model in general dimension d , one takes

V (Si ,Sj ) = −KSi · Sj . (4.13)

In d = 2, it is however much more convenient to define

e−V (Si ,Sj ) = 1 + KSi · Sj (4.14)

where K is a dimensionless coupling constant.
The high-temperature (K � 1) expansion of (4.11) with potential (4.14) parallels

the Fortuin-Kasteleyn cluster expansion of the Potts model partition function. To
each term in the expansion we associate an edge subset E′ ⊆ E, with e = (ij) ∈ E

if we take the term KSi · Sj in (4.14). For each i ∈ V , by the symmetry Si → −Si ,
the contribution to Z of a term associated with E′ vanishes unless i is incident on
an even number of edges in E′.

As a further simplification we now take G to be the hexagonal lattice. Since each
vertex i ∈ V has degree three, the only edge sets E′ contributing to the expansion
of Z are those where the vertices of G′ = (V ,E′) all have degree zero or two, as
shown in Fig. 4.4. In other words, G′ is a set of self-avoiding and mutually avoiding
loops. The contribution to Z of a loop of length p edges is

Zp = Kp

∫
dS1 . . .

∫
dSp

∑

α1,...,αp

S
α1
1 S

α1
2 S

α2
2 S

α2
3 . . . Sα1

p S
αp

1 (4.15)

= Kp
∑

α1,...,αp

δ(α1, α2)δ(α2, α3) . . . δ(αp,α1) (4.16)

= Kpn, (4.17)

where we have used (4.10) repeatedly. We have then finally

Z =
∑′

E′⊆E

K |E′|nl(E′), (4.18)

where l(E′) is the number of cycles (loops), and the prime on the summation re-
minds us that the summation is constrained to edge subsets E′ such that each vertex
i ∈ V is indicent to zero or two edges of E′.

The O(n) model partition function in the form (4.18) is quite similar to the loop
representation (4.9) of the Potts model, except that the loop weight

√
Q has been
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replaced by n, and that vertices are now allowed to be empty of loops with a relative
Boltzmann weight K−1 proportional to the temperature.

At infinite temperature (K = 0), we have thus E′ = ∅ and Z = 1. As the temper-
ature is lowered, loops will start appearing, and one would expect that there exists
some critical coupling Kc such that the average length of a loop diverges. Obvi-
ously, this means that the correlation length will diverge as well, and so Kc could be
expected to be the locus of a second order phase transition. The exact solution of the
O(n) model however shows that these hypotheses are only fulfilled for −2 ≤ n ≤ 2.
Assuming this to be the case, if Kc is small enough, one could hope that the critical
behaviour is identical to that of the generic O(n) model, since the two potentials
(4.13)–(4.14) agree to first order in K . The exact solution implies that one has in
fact

Kc = (2 ± √
2 − n)−1/2. (4.19)

4.1.3 Vertex and Height Models

In the definition of the Q-state Potts and the O(n) models, the parameters Q and n

were originally positive integers. However, in the corresponding loop models, (4.9)
and (4.18), they appear as formal parameters and may thus take arbitrary complex
values. The price to pay for this generalisation is the appearance of a non-locally
defined quantity, the number of loops l. The locality of the models may be recov-
ered by transforming them to vertex models with complex Boltzmann weights as
we now show.

4.1.3.1 From Loops to Arrows

The following argument supposes that G = (V ,E) is a (connected) planar graph.
Most applications however suppose a regular lattice, a situation to which we shall
return shortly.

Consider a model of self-avoiding loops defined on G (or some related graph,
such as the medial graph M (G) for the Potts model). The Boltzmann weights
are supposed to consist of a local piece—depending on if and how the loops pass
through a given vertex—and a non-local piece of the form nl , where n is the loop
weight and l is the number of loops. In the case of the Potts model we have n = √

Q.
In a first step, each loop is independently decorated by a global orientation

s = ±1, which by planarity and self-avoidance can be described as either coun-
terclockwise (s = 1) or clockwise (s = −1). If each oriented loop is given a weight
w(s), we have the requirement

n = w(1) + w(−1). (4.20)

An obvious possibility, sometimes referred to as the real loop ensemble, is w(1) =
w(−1) = n/2. This can be interpreted as an O(n/2) model of complex spins.
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We are however more interested in the complex loop ensemble with w(s) = eisγ .
Note that in the expected critical regime,

n = 2 cosγ ∈ [−2,2], (4.21)

the parameter γ ∈ [0,π] is real. Locality is retrieved by remarking that the weights
w(±1) are equivalent to assigning a local weight w(α/2π) each time the loop turns
an angle α (counted positive for left turns).

Note that a planar graph cannot necessarily be drawn in the plane in such a way
that all edges are straight line segments. Therefore, the local weights w(α/2π) must
in general be assigned both to vertices and to edges. However, it is certainly pos-
sible to redraw the graph so that each edge is a succession of several straight line
segments. Introducing auxiliary vertices of degree two at the places where two seg-
ments join up, the weight for turning can be assigned to those auxiliary vertices. In
that sense, any planar graph admits a local redistribution of the loop weight, with
local weights w(α/2π) assigned only to vertices.

The loop model is now transformed into a local vertex model by assigning to
each edge traversed by a loop the orientation of that loop. An edge not traversed by
any loop is assigned no orientation. The total vertex weight is determined from the
configuration of its incident oriented edges: it equals the above local loop weights
summed over the possible linkings of oriented loops which are compatible with the
given edge orientations. In addition, one must multiply this by any loop-independent
local weights, such as x in (4.9) or K in (4.18).

To see how this is done, it most convenient to turn to some representative exam-
ples on the regular square lattice.

4.1.3.2 Six-Vertex Model

Consider first the Potts model on the square lattice G. The loop model is defined on
the corresponding medial lattice M (G) which is another (tilted) square lattice. Each
edge of the lattice is visited by a loop, and two loop segments (possibly parts of the
same loop) meet at each vertex. In the oriented loop representation, each vertex is
therefore incident on two outgoing and two in-going edges—in other words, it has
in-degree two and out-degree two.

It is convenient for the subsequent discussion to make the couplings of the Potts
model anisotropic. In its original spin formulation (4.3) we therefore let K1 (resp.
K2) denote respectively the dimensionless coupling in the horizontal (resp. vertical)
direction of the square lattice, and we let

x1 = eK1 − 1√
Q

, x2 = eK2 − 1√
Q

(4.22)

be the corresponding parameters appearing in the loop representation (4.9). Note
that in all the results obtained this far it is straightforward to generalise to completely
inhomogeneous edge dependent couplings, and the only reason that we have chosen
not to present the results in this generality is that it tends to make notations slightly
cumbersome.
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Fig. 4.5 Weights in the six-vertex model

The six possible configurations of arrows around a vertex of the medial lattice
M (G) are shown in Fig. 4.5. The corresponding vertex weights are denoted ωp

(resp. ω′
p) on the even (resp. odd) sub-lattice of M (G). By definition, a vertex of

the even (resp. odd) sub-lattice of M (G) is the mid point of an edge with coupling
K1 (resp. K2) of the original spin lattice G. With respect to Fig. 4.5 we define the
even sub-lattice to be such that an edge e ∈ E is horizontal, and the corresponding
dual edge e∗ ∈ E∗ is vertical. For the odd sub-lattice, exchange e and e∗.

Using (4.9) we then have

Z = Q|V |/2
∑

arrows

6∏

p=1

(ωp)Np
(
ω′

p

)N ′
p , (4.23)

where the sum is over arrow configurations satisfying the constraint “two in, two
out” at each vertex, and Np (resp. N ′

p) is the number of vertices on the even (resp.
odd) sub-lattice with arrow configuration p. This is the six-vertex representation
of the square-lattice Potts model. The weights read explicitly

ω1, . . . ,ω6 = 1,1, x1, x1, eiγ /2 + x1e−iγ /2, e−iγ /2 + x1eiγ /2 (4.24)

ω′
1, . . . ,ω

′
6 = x2, x2,1,1, e−iγ /2 + x2eiγ /2, eiγ /2 + x2e−iγ /2. (4.25)

To see this, note that configurations i = 1,2,3,4 are compatible with just one link-
ing of the oriented loops:

whereas i = 5,6 are compatible with two different linkings (and the weight is ob-
tained by summing over these two):

Note that the even and odd sub-lattices are related by a π/2 rotation of the ver-
tices in Fig. 4.5. This rotation interchanges configurations (ω1,ω2) ↔ (ω′

3,ω
′
4) and

ω5 ↔ ω′
6. On the level of the weights it corresponds to x1 ↔ x2.
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4.1.3.3 From Arrows to Heights

The vertex models can be turned into height models, often referred to as solid-
on-solid models, or SOS models for short. To this end, assign a scalar variable
h(f ) to each lattice face f (i.e., to each vertex of the lattice dual to the one on
which the loop model has been defined), so that h increases (resp. decreases) by a

each time one traverses a left-going (resp. right-going) edge. This definition of the
height h is consistent, since each vertex is incident on as many in-going as outgoing
edges. Since this defines only height differences, one completes the definition of h

by arbitrarily fixing h(f0) = 0, where f0 is some fixed face.
The choice of the elementary height jump a is completely arbitrary and subse-

quent physical results are independent of it. It is conventional to set a = π for the
Potts and O(n) models.

In the arrow formulation the interaction was among the arrows incident on a
common vertex. By duality, this turns into an interaction between the heights around
a common face of the dual lattice. For that reason, the height models are also known
as interaction-round-a-face models, or IRF models for short.

We should also point out that when dealing with loop models which are more
involved than those presented in the present section, it may be necessary to take the
height variable as vector valued.

4.1.3.4 Twisted Vertex Model

Sometimes it is convenient to consider particular correlation functions in which the
weight of some of the loops are changed. As an elementary example, consider the
Potts loop model defined on a connected planar graph G = (V ,E) and let i1, i2 ∈ V

be a pair of root vertices.2 The partition function Z(n) is given by (4.9) with loop
weight n = √

Q and additional local weights at the vertices.
Define now a modified partition function Z1(n,n1) as follows: loops on M (G)

surrounding neither or both of the roots have an unchanged weight n, whereas those
surrounding only one of the roots have a modified weight n1. This defines the two-
point correlation function Z1(n,n1)/Z(n). An interesting special case is provided
by n1 = 0, which expresses the probability that the two roots belong to the same
cluster.

It is possible to produce Z1(n,n1) in the vertex model representation, leading to
a so-called twisted vertex model. To this end, let P12 be an oriented self-avoiding
path on G, going from i1 to i2. Let us parametrise

n1 = 2 cosγ1 ∈ [−2,2] (4.26)

with real γ1 ∈ [0,π]. In the arrow formulation, we then associate a special weight
w̃ to any edge ẽ of M (G) that crosses the path P12. The weight w̃ depends on

2The same construction can be taken over for the O(n) loop model (4.18) on condition that the
roots be located on the dual lattice, and by allowing for other obvious modifications.
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the orientation of the arrow on ẽ: it equals eiγ1 (resp. e−iγ1 ) if the arrow points
from left to right (resp. from right to left) upon viewing ẽ along the direction given
by P12.

The path P12 is often called a seam, and the edges traversing it are referred to
as seam edges.

In the oriented loop representation, it is easy to see that a loop surrounding nei-
ther or both of the roots will traverse P12 an even number of times, and the phase
factors w̃ will cancel out globally. However, a loop surrounding just one of the roots
with have one excess factor e±iγ1 depending on its global orientation (clockwise
or counterclockwise), leading to (4.26) once the orientations have been summed
over.

Note that the above construction of Z1(n,n1) depends on the seam P12 only
through its end points i1 and i2. In that sense, the exact shape of the seam is irrelevant
and can be deformed at will.

Finally, the weights w̃ can be absorbed in the vertex weights, by incorporating
them in the weight of the vertex at the right (with respect to the orientation defined
by P12) end point of ẽ.

4.2 Coulomb Gas in the Bulk

It has been known since the 1970’s that the critical point of many two-dimensional
models of statistical physics can be identified with a Gaussian free-field theory.
A general framework for the computation of critical exponents was first given in
1977 by José et al. in the so-called spin wave picture. This was further elaborated
in the early 1980’s by den Nijs and Nienhuis into what has become known as the
Coulomb gas (CG) construction.

The CG approach is particularly suited to deal with the continuum limit of lattice
models of closed loops, in which each loop carries a Boltzmann weight n.

The marriage between the CG and conformal field theory (CFT) happened in
1986–87, when Di Francesco, Saleur and Zuber made the loop model ↔ CG corre-
spondence more precise and showed how the ideas of modular invariance can be put
to good use in the study of loop models. At the same time, Duplantier and Saleur
developed a range of applications to polymer physics.

We have seen how the loop models can be transformed into height models with
local (albeit complex) Boltzmann weights. It is the continuum limit of this height
which acts as the conformally invariant free field. The underlying lattice model im-
plies that this height field is compactified. The naive free-field action however needs
to be modified with extra terms, traditionally known as background and screening
electric charges, see also chapter 1. The geometrical significance of these terms has
been greatly clarified by Kondev and collaborators. The resulting CFT, known as a
Liouville field-theory, will be written down in this section.
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4.2.1 Compactified Free Boson

In the continuum limit, we expect the local height field h to converge to a free
bosonic field φ(r), whose entropic fluctuations are described by an action of the
form

S ∼ g

∫
d2r (∇φ)2, (4.27)

with coupling g = g(n) which is a monotonically increasing function of n. In par-
ticular, for n → ∞ the lattice model is dominated by the configuration where loops
of the minimal possible length cover the lattice densely; the height field is then flat,
φ(r) = constant, and the correlation length ξ is of the order of the lattice spac-
ing. For finite but large n, φ will start fluctuating, loop lengths will be exponen-
tially distributed, and ξ will be of the order of the linear size of the largest loop.
When n → n+

c , for some critical nc (we shall see that nc = 2), this size will di-
verge, and for n ≤ nc the loop model will be conformally invariant with critical
exponents that depend on g(n). The interface described by φ(r) is then in a rough
phase.

The remainder of this section is devoted to making this intuitive picture more
precise, and to refine the free bosonic description of the critical phase.

As a first step towards greater precision, we now argue that φ(r) is in fact a
compactified boson. To see this, it is convenient to consider the oriented loop con-
figurations that give rise to a maximally flat microscopic height h; we shall refer to
them as ideal states.

For the Potts model on the square lattice, an ideal state is a dense packing of
length-four loops, all having the same orientation. There are four such states, corre-
sponding to two choices of orientation and two choices of the sub-lattice of lattice
faces surrounded by the loops. An ideal state can be gradually changed into another
by means of ∼ N local changes of the transition system and/or the edge orienta-
tions. As a result, the mean height will change, φ → φ ± a. Iterating this, one sees
that one may return to the initial ideal state whilst having φ → φ ± 2a. For con-
sistency, we must therefore require φ(r) ∈ R/(2aZ), i.e., the field is compactified
indeed.

The same construction, applied to the O(n) model, yields six ideal states of ori-
ented length-six loops (resulting from a choice of three sub-lattices and two orien-
tations). Changing the ideal state in four steps, as shown in Fig. 4.6, produces the
initial state but with a height change of ±2a. So one has the same compactification
radius, φ(r) ∈R/(2aZ), as in the case of the Potts model. We shall follow standard
conventions and set a = π in what follows.

Note that we may already suspect—and we shall see below in more detail—
that the O(n) model in the dense phase and the Q-state Potts model give identical
critical theories in the continuum limit, for n = √

Q. However, the correspondence
between operators in the microscopic model and the continuum limit is not neces-
sarily identical, leading to subtle differences. For instance, the energy operators of
the two models become different objects in the continuum limit.
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Fig. 4.6 Ideal states of the O(n) model on the hexagonal lattice. For each of the five panels, the
state of the complete infinite lattice is obtained by tiling the plane with the three faces shown,
while respecting the three-sub-lattice structure. The different panels are related, from left to right,
by the construction explained in the main text, under which one ideal state is gradually changed
into another. The leftmost and rightmost panels represent the same ideal state, but with a global
height change φ → φ + 2a that determines the compactification radius [15]

4.2.2 Liouville Field-Theory

The essence of the above discussion is that the critical properties of the loop models
under consideration can be described by a continuum-limit partition function that
takes the form of a functional integral

Z =
∫

Dφ(r) exp
(−S

[
φ(r)

])
. (4.28)

Here S[φ(r)] is the Euclidean action of the compactified scalar field φ(r) ∈
R/(2πZ). The hypothesis that the critical phase is described by bounded elastic
fluctuations around the ideal states means that S must contain a term

SE = g

4π

∫
d2r (∇φ)2 (4.29)

with coupling constant g > 0. Higher derivative terms that one may think of adding
to (4.29) can be ruled out by the φ → −φ symmetry, or by arguing a posteriori that
they are RG-irrelevant in the full field theory that we are about to construct.

Note that the partition function (4.28) does not purport to coincide with (4.3)
or (4.18) on the scale of the lattice constant. (A similar remark holds true for the
correlation functions that one may similarly write down.) We do however claim that
their long-distance properties are the same. In that sense, the CG approach is an
exact, albeit by no means rigorous, method for computing critical exponents and
related quantities. A more precise equivalence between discrete and continuum-
limit partition functions can however be achieved on a torus.

The action (4.29) is that of a compactified boson. To obtain the full physics of
the loop model, one needs however, to add two more terms to the action, as we now
shall see.

To proceed, we consider the underlying lattice model as being defined on a cylin-
der, r = (r, t). This has the advantage of making direct contact with the radial quan-
tisation formalism. The boundary conditions are thus periodic in the space direction,
r = r + L, and free in the time (t) direction. Ultimately, the results obtained on the
cylinder can always be transformed into other geometries by means of a conformal
mapping.
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With this geometry, the equivalence between the loop model and a local height
model with complex weights must be revisited. One proceeds as in our derivation
of the twisted vertex model, taking the two root vertices to reside on opposite ends
of the cylinder.

While loops homotopic to a point still acquire their correct global weight n from
the local angle-dependent weights w(α/2π), this is no longer true for loops that
wind around the cylinder. Summing over loop orientations, their weight would be
n̄ = 1 + 1 = 2. Consider now adding a term

SB = ie0

4π

∫
d2rφ(r)R(r) (4.30)

to the effective action S, where R is the scalar curvature3 of the space r. The pa-
rameter e0 is known in CG language as the background electric charge. On the
cylinder, one has simply SB = ie0(φ(r,∞) − φ(r,−∞)), meaning that in the par-
tition function (4.28) an oriented loop with winding number q = 0,±1 (all other
winding numbers are forbidden by the self-avoidance of the loops) can equivalently
be assigned an extra weight of exp(iπqe0).

For non-winding loops (q = 0) this does not change the reasoning of the height
mapping, whilst summing over the two orientations (q = ±1) of a winding loop
produces the weight n̄ = 2 cos(πe0). The choice e0 = γ /π will thus assign to a
winding loop the same weight n̄ = n [see (4.21)] as to a non-winding one (but note
that other choices leading to n̄ �= n may be useful in some applications of the CG
technique).

The object eieφ (or more precisely, its normal ordered product :eieφ :) is known in
field theory as a vertex operator of (electric) charge e. The boundary term (4.30)
thus corresponds to the insertion of two oppositely charged vertex operators at either
end of the cylinder.

At this stage two problems remain: the field theory does not yet take account of
the weight n of contractible loops, and the coupling constant g has not yet been
determined. These two problems are closely linked, and allow us to fix exactly g =
g(n). The idea is to add a further Liouville term

SL =
∫

d2rw
[
φ(r)

]
(4.31)

to the action, which then reads in full

S
[
φ(r)

] = SE + SB + SL. (4.32)

In (4.31), e−w[φ(r)] is the scaling limit of the microscopic vertex weights wi . To
identify it we show the argument for the O(n) model, the Potts case being similar.

Due to the compactification, SL[φ] is a periodic functional of the field, and as
such it can be developed as a Fourier sum over vertex operators

w[φ] =
∑

e∈Lw

w̃e eieφ, (4.33)

3We consider the scalar curvature in a generalised sense, so that delta function contributions may
be located at the boundaries. Implicitly, we are just applying the Gauss-Bonnet theorem.
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where Lw is some sub-lattice of L0 = Z. Note that Lw may be a proper sub-lattice
of L0 if w[φ] has a higher periodicity than that trivially conferred by the compact-
ification of φ. By inspecting Fig. 4.6, we see that this is indeed the case here: the
(geometric) averages of the microscopic weights coincide on the first, third, and
fifth panels, indicating that the correct choice is Lw = 2L0. This intuitive deriva-
tion of Lw (which can easily be corroborated by considering more complicated
microscopic configurations) demonstrates the utility of the ideal state construction.

We recall some important properties of the compactified boson with action SE,
see also chapter 1. Its central charge is c = 1 and the scaling dimension xe,m of an
operator (see Eq. (1.10)) with electromagnetic charge (e,m) is given by

xe,m = 2Δe,m = 1

2

[
e2

g
+ gm2

]
. (4.34)

Having now identified the electric charge e with that of the vertex operator eieφ ,
one could alternatively readily re-derive (4.34) by computing the two-point function
〈eieφ(r)e−ieφ(r′)〉 by standard Gaussian integration.

The magnetic charge m corresponds to dislocations in the height field φ due to
the presence of defect lines. Below we shall see how to identify these defect lines
with the extremities of polymers and compute the related critical exponents.

It remains to assess how the properties of the compactified boson are modified
by the inclusion of the term SB. Physical reasoning consists in arguing that the
vertex operators e±ie0φ will create a “floating” electric charge of magnitude 2e0 that
“screens” that of the other fields in any given correlation function. We infer that
(4.34) must be changed into

xe,m = 2Δe,m = 1

2

[
e(e − 2e0)

g
+ gm2

]
. (4.35)

Note that our normalisation is such that both e and m are integer.

4.2.3 Marginality Requirement

Following Kondev we now claim that the Liouville potential SL must be exactly
marginal. This follows from the fact that all loops carry the same weight n, inde-
pendently of their size, and so the term SL in the action that enforces the loop weight
must not renormalise under a scale transformation. The most relevant vertex opera-
tor appearing in (4.33) has charge ew = 2π/a = 2, and so xew,0 = 2. Using (4.35),
this fixes the coupling constant as g = 1 − e0. In other words, the loop weight has
been related to the CG coupling as

n = ±√
Q = −2 cos(πg) (4.36)

with 0 < g ≤ 1 for the Potts model or the dense O(n) model.
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The term SB shifts the ground state energy with respect to the c = 1 theory de-
scribed by SE alone. The corrected central charge is then c = 1+12xe0,0. This gives

c = 1 − 6(1 − g)2

g
. (4.37)

It should be noted that the choice ew = 2 is not the only one possible. Namely,
the coefficient w̃ew of the corresponding vertex operator in (4.33) may be made to
vanish, either by tuning the temperature T in the O(n) model, or by introducing non-
magnetic vacancies in the Potts model. The former case corresponds to taking the
high-temperature solution [plus sign] in (4.19), while the latter amounts to being
at the tricritical point of the Potts model. The next-most relevant choice is then
ẽw = −2, and going through the same steps as above we see that one can simply
maintain (4.36), but take the coupling in the interval 1 ≤ g ≤ 2 for the dilute O(n)

model or the tricritical Potts model.
The electric charge ew whose vertex operator is required to be exactly marginal

is known as the screening charge in standard CG terminology.
The central charge (4.37) can now be formally identified with that of the Kac

table for unitary minimal models

c = 1 − 6

m(m + 1)
, (4.38)

Δr,s = ((m + 1)r − ms)2 − 1

4m(m + 1)
. (4.39)

The result is a formal relation between the minimal model index m and the CG
coupling g, valid for integer m. We have

m =
{ g

1−g
for the dense O(n) model, or the critical Potts model

1
g−1 for the dilute O(n) model.

(4.40)

Note that this identification holds also for non-integer m, when the loop models
are non-unitary. Even in that case, critical exponents can be conveniently written in
terms of the conformal weights Δr,s and often correspond to integer choices of r, s.

The special cases n → 0 are related to self-avoiding walks and polygons. This
gives g = 1/2 for dense polymers (with c = −2 and m = 1), and g = 3/2 for dilute
ones (with c = 0 and m = 2).

4.2.4 Critical Exponents

The Coulomb gas technology can be used to compute a variety of critical exponents
in loop models, and in the related Potts and O(n) models. Rather than insisting
on completeness, we shall treat a simple and significant example of the so-called
watermelon exponents.

An important object in loop models is the operator O(r1) that inserts  oriented
lines at a given point r1. Microscopically, this can be achieved by violating the arrow
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Fig. 4.7 Watermelon
configuration with  = 4 legs
[15]

conservation constraint at r1. For instance, in the O(n) model one can allow a vertex
which is adjacent to one outgoing and two empty edges. Doing so at  vertices in
a small region around r1 yields a microscopic realisation of the composite operator
O(r1).

If one had strict arrow conservation at all other vertices, the insertion of O(r1)

would not lead to a consistent configuration. However, also inserting O−(r2), the
operator that absorbs  oriented lines in a small region around y, will lead to consis-
tent configurations (see Fig. 4.7) in which  defect lines propagate from r1 to r2. Let
Z(r1, r2) be the corresponding constrained partition function. One then expects

〈
O(r1)O−(r2)

〉 := Z(r1, r2)

Z
∼ 1

|r1 − r2|2x
for |r1 − r2| � 1. (4.41)

The corresponding critical exponents x = Δ + Δ̄ are known as watermelon
(or fuseau, or -leg) exponents. To compute them, we first notice that the sum of
the height differences around a closed contour encircling r1 but not r2 will be a.
Equivalently, one could place the two defects at the extremities of a cylinder [i.e.,
taking r1 = (r,−∞) and r2 = (r,∞)], and the height difference would be picked
up by any non-contractible loop separating r1 and r2.

A little care is needed to interpret the configurations of Z(r1, r2) in the model
of un-oriented loops. The fact that all  lines are oriented away from r1 prevents
them from annihilating at any other vertex than r2. One should therefore like to
think about them as  marked lines linking r1 and r2, where each line carries the
Boltzmann weight 1. This is consistent with not summing over the orientations of
the defect lines in the oriented loop model.

However, each oriented line can also pick up spurious phase factors w(α/2π),
due to the local redistribution of loop weights, whenever it turns around the end
points r1 and r2. These factors are however exactly cancelled if we insert in addition
a vertex operator eie0φ (resp. e−ie0φ) at r1 (resp. r2). The argument is exactly the
same as the one used to motivate the background charge e0 in the first place. Note
that these vertex operators do not modify the weighting of closed loops, since these
must encircle either none or both of r1, r2. We conclude that x = xe0,m

, and using
(4.35) this gives

x = 1

8
g2 − (1 − g)2

2g
. (4.42)
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Interestingly, these exponents can be attributed to the Kac table under the identi-
fication (4.40). One has

x =
{

2Δ0,/2 for the dense O(n) model

2Δ/2,0 for the dilute O(n) model.
(4.43)

The appearance of half-integer indices is somewhat puzzling, whereas the fact that
these exponents are located outside the fundamental domain of the Kac table reflects
the non-local nature of the watermelon operators.

It should be noticed that x4 is irrelevant (resp. relevant) in the dilute (resp. dense)
phase of the O(n) model, i.e., for 1 < g < 2 (resp. 0 < g < 1). This means that on
lattices with vertices of degree ≥ 4, loop self-intersections are irrelevant in the dilute
phase. On the other hand, for the dense phase such self-intersections are relevant and
will induce a flow to a supersymmetric Goldstone phase that is not described by the
CG approach. In other words, Nienhuis’ original approximation of the true O(n)

model that led to (4.18) is exact in the continuum limit, but only in the dilute phase.

4.2.4.1 Application to Percolation Clusters

The watermelon exponents can be used to elucidate the fractal properties of the
Fortuin-Kasteleyn (FK) clusters defined in Sect. 4.1.1.1. Here we limit the discus-
sion to the special case of percolation clusters.

Bond percolation is the Q → 1 limit of FK clusters. We have therefore g = 2
3

from (4.36). The watermelon exponents (4.42) are thus

x = 2 − 1

12
. (4.44)

Marking a point r on the hull of a percolation cluster corresponds to the insertion
of the operator O2(r). Indeed, since the cluster is supposed to be infinite, the two
pieces of the hull that go away from the marked point will effectively persist all the
way to “infinity”; they hence behave just like two self-avoiding legs. The fractal
dimension of the hull is therefore

dh = 2 − x2 = 7

4
. (4.45)

A pivotal edge is defined as an edge belonging to a percolation cluster which is such
that the removal of the edge makes the cluster break into two connected components.
In the literature on percolation, pivotal edges are also known as red bonds. Cutting
the loop strands on either side of any edge belonging to the cluster looks like an
 = 4 leg insertion. Note however that only if the edge is pivotal will the four legs
propagate to “infinity” without contracting among themselves. Therefore the fractal
dimension of red bonds is

drb = 2 − x4 = 3

4
. (4.46)
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4.2.4.2 Magnetic Exponent

The watermelon exponents can be said to be of the “magnetic” type, since they
induce a magnetic type defect charge m in the CG. The standard magnetic expo-
nent, describing the decay of the spin-spin correlation function in the Potts model,
is however not of the watermelon type. It can nevertheless be inferred from (4.35)
as follows:

The probability that two spins situated at r1 and r2 are in the same Potts state is
proportional, in the random cluster picture, to the probability that they belong to the
same cluster. In the cylinder geometry this means that no winding loop separates r1
from r2. This can be attained in the CG by giving a weight n1 = 0 to such loops. We
have seen that inserting a pair of vertex operators with charge ±e at r1 and r2 leads
exactly to this situation with n1 = 2 cos(πe), and so we need e = 1

2 . The scaling
dimension of this excitation, with respect to the ground state which has e = e0, is
then

xm = x 1
2 ,0 − xe0,0 = 1 − 4(1 − g)2

8g
. (4.47)

In particular for the Ising model, with g = 3
4 , this yields the magnetic exponent

xσ := xm = 1
8 , or in standard notation

β = 1

8
(Ising model). (4.48)

For bond percolation, with g = 2
3 , we find xm = 5

48 . The fractal dimension of a
percolation cluster is thus

dc = 2 − xm = 91

48
. (4.49)

The location in the Kac table (4.39) of the magnetic exponent (4.47) can be found
using (4.40):

xm = 2Δ1/2,0. (4.50)

Note that this differs from the lowest possible watermelon excitation x2 = 2Δ0,1.
Indeed, the two-leg excitation corresponds to a cluster that propagates along the
length direction of the cylinder without wrapping around the transverse periodic di-
rection. The dominant configurations participating in the magnetic correlation func-
tion have no propagating legs, since the cluster containing r1 and r2 will typically
wrap around the cylinder.

4.3 Coulomb Gas at the Boundary

The aspects of CFT exposed to this point pertain to unbounded geometries, either
that of the infinite plane (Riemann sphere) or that of the torus (which is really a finite
geometry made unbounded through the periodic boundary conditions). In contrast,
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boundary conformal field-theory (BCFT) describes surface critical behaviour, i.e.,
a critical system confined to a bounded geometry. The simplest such geometry, and
probably the most relevant from the point of view of polymer physics, is that of the
upper half plane {z | Im z ≥ 0}, where the real axis R acts as the boundary (one-
dimensional “surface”).

The foundations of BCFT were laid by Cardy who also initiated many of the
subsequent developments and applications.

4.3.1 Surface Critical Behaviour

To convey an idea of which phase transitions may result from the interplay be-
tween bulk and boundary degrees of freedom, and what may be the corresponding
boundary conditions, we begin by a qualitative discussion of a simple magnetic spin
system, which is strictly valid only for d > 2 dimensions. We denote the local or-
der parameter (magnetisation) by φ. When the boundary spins enjoy free boundary
conditions, they interact more weakly than the bulk spins, since microscopically
they are coupled to fewer neighbouring spins. Upon lowering the temperature, the
bulk will therefore order before the surface: this is the so-called ordinary transi-
tion. Now consider placing the system slightly below the bulk critical temperature.
Then φ is non-zero deep inside the bulk, and will decrease upon approaching the
boundary. One can argue that in the continuum limit φ will vanish exactly on the
boundary. Thus, the Dirichlet boundary condition φ|R = 0 is the appropriate choice
for describing the ordinary transition.

Let us now introduce a coupling Js between nearest-neighbour spins on the
boundary which may be different from the usual bulk coupling constant J . Tak-
ing Js > J one may “help” the boundary to order more easily.4 When Js takes a
certain critical value, we are at the special transition, at which the bulk and the
boundary order simultaneously. Finally, when Js → ∞ the boundary spins are al-
ways completely ordered,5 a fact which changes the nature of the ordering transition
of the bulk, now referred to as the extraordinary transition. This corresponds to
the Dirichlet boundary condition φ|R = ∞ in the continuum limit. Note that in the
application of boundary CFT to loop models the meaning of Js is to give a specific
fugacity to monomers on the boundary.

The control parameter Js can be thought of in a renormalisation group sense,
and is readily seen to be irrelevant at the ordinary and extraordinary transitions. Ac-
cordingly we expect a boundary RG flow to go from the special to either of the two
other transitions. (In the case of the 2D Ising model, the special and extraordinary
transitions actually coincide.)

4A similar effect could be obtained by adding a surface magnetic field, but here we do not wish to
break the symmetry of the model [typically O(n) in applications to loop models].
5This should not (as is sometimes seen in the literature) be confused with imposing fixed boundary
conditions, which would rather correspond to an infinite symmetry-breaking field applied on the
boundary (and is sometimes referred to as normal transition).
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In our subsequent application to loop models, we rather think of φ as a height
field which is dual to the system of oriented loops (this is the so-called Coulomb
gas approach). In other words, the loops are level lines of φ. Dirichlet boundary
conditions then describe a situation in which loops are reflected off the boundary,
and adjoining two different Dirichlet conditions forces one or more “loop ends” to
emanate from the boundary. One may also impose Neumann boundary conditions,
∂φ/∂y|R = 0, meaning that the “loops” coming close to the boundary must in fact
terminate perpendicular to it. Clearly the non-local aspects of these situations call
for a more detailed discussion.

4.3.2 Sketch of Boundary CFT

We assume known the principal results of bulk CFT and focus here the discussion
on the main differences with the boundary case (see also Chap. 1).

The allowed conformal mappings in BCFT must keep invariant both the bound-
ary itself and the boundary conditions imposed along it. For the global conformal
transformations

w(z) = a11z + a12

a21z + a22
(4.51)

the invariance of the real axis forces aij ∈ R, i.e., they form the group Sl(2,R) and
the number of parameters is halved from 6 to 3. For an infinitesimal local confor-
mal transformation z → w(z) = z + ε(z) the requirement reads ε(z̄) = ε̄(z). This
property can be used to eliminate the ε̄(z) part altogether, since it is just the analytic
continuation of ε(z̄) into the lower half plane. It follows that L̄n = L−n, and so one
half of the conformal generators has been eliminated.

At the level of the stress tensor, the requirement is T (z̄) = T̄ (z). In Cartesian
coordinates this reads Txy = 0 on the real axis, the so-called conformal boundary
condition. Its physical meaning is that there is no energy-momentum flow across R.

This has important consequences on the conformal Ward identity where T (z) is
applied to a product of primary operators X = ∏

j φj (zj , z̄j ) situated in the upper
half plane. The contour C surrounding all zj can then be taken as a large semicircle
with the diameter parallel to the real axis. However, writing the same identity for
T̄ (z̄) yields another Ward identity involving the conjugate semicircle contour C̄,
and since T̄ = T when z ∈ R, the two contours can be fused into a complete circle
surrounding both zj and z̄j . The end result is thus

T (z)X =
∑

j

(
Δj

(z − zj )2
+ ∂zj

z − zj

+ Δ̄j

(z̄ − z̄j )2
+ ∂z̄j

z̄ − z̄j

)
X. (4.52)

The fact that each of the usual terms occur twice means that everything happens
as if each primary operator in the upper half plane were accompanied by a mirror
operator in the lower half plane. This means that computations in the BCFT can be
done using a method of images similar to that used in electrostatics when solving
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the Laplace equation with boundary conditions. Correlation functions are computed
as if the theory were defined on the whole complex plane, and governed by a single
Virasoro algebra: the physical operators are then situated in the upper half-plane, and
their unphysical mirror images in the lower half-plane. The simplification of getting
rid of L̄n has thus been achieved at the price of doubling the number of points in
correlation functions. In practice, the former simplification largely outweighs the
latter complication.

In particular, the n-point boundary correlation functions satisfy the very same dif-
ferential equations as 2n-point bulk correlation functions, but with different bound-
ary conditions. The most interesting cases are n = 1 and n = 2, both tractable in
the bulk picture in several situations of practical importance. As examples of the
physical information which can be extracted from these cases we should mention,
for n = 1, the probability profile of finding a monomer of a loop at a certain dis-
tance from the boundary, and for n = 2, the probability that a polymer comes close
to the boundary at two prescribed points. A particularly celebrated application of
the n = 2 case is Cardy’s computation of the crossing probability that a percolation
cluster traverses a large rectangle, as a function of the aspect ration of the latter.

The radial quantisation scheme still makes sense in BCFT. The associated con-
formal mapping

w(z) = L

π
ln z (4.53)

transforms the upper half plane into a semi-infinite strip of width L with non-
periodic transverse boundary conditions. The two rims of the strip are then the
images of the positive and the negative real axis, and the time (resp. space) di-
rection is parallel (resp. perpendicular) to the axis of the strip. The dilatation oper-
ator reads D = L0 and the Hamiltonian H = (π/L)(L0 − c/24). Non-trivial eigen-
states of H are formed by a boundary operator φj (0) acting on the vacuum state,
|Δ〉 = φj (0)|0〉.

In general, we expect boundary operators to have different scaling dimensions
than bulk operators. This can be understood from the method of images: when a
primary operator approaches the boundary it interacts with its mirror image and,
by the usual OPE, produces a series of other primaries which then describe the
boundary critical behaviour.

Likewise, a field φ(r,s) with a given interpretation in the bulk will typically have
a different interpretation when situated on the boundary. Examples pertinent to loop
models will be given later.

Note that the usual transformation law

φ′(w, w̄) =
(

dw

dz

)−Δ(
dw̄

dz̄

)−Δ̄

φ(z, z̄) (4.54)

applied to a boundary operator is the reason why we have not discussed finite Dirich-
let boundary conditions at the beginning of this section. More generally, any uniform
boundary condition is expected to flow under the renormalisation group towards a
conformally invariant boundary condition. It is one of the goals of BCFT to classify
such boundary conditions.
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One of the main results obtained is the following: For diagonal models (i.e.,
nΔ,Δ̄ = δΔ,Δ̄) there is a bijection between the primary operator in the bulk CFT
and the conformally invariant boundary conditions in the BCFT. For example, for
the Ising model the three different bulk primary operators (the identity I = φ(1,1),
the spin σ = φ(1,2), and the energy ε = φ(2,1)) correspond to three types of uniform
boundary conditions in the lattice model of spins (fixed s = +1 and s = −1, and
free boundary conditions).

To this point, we have discussed only uniform boundary conditions. It is impor-
tant to realise that the radial quantisation picture with a boundary operator φj (0)

situated at the origin is compatible also with mixed boundary conditions, i.e., one
boundary condition on the negative real half-axis and another on the positive half-
axis. In this case, φj (0) is called a boundary condition changing operator. One
then needs a second operator φj (∞) situated at infinity to change back the boundary
condition. A more symmetric picture is obtained by mapping the upper half-plane
to the strip, through (4.53). There are then different boundary conditions on the two
sides of the strip, and a boundary condition changing operator is located at either
end of the strip. More generally, one may study a BCFT on any simply connected
domain with a variety of different boundary conditions along the boundary, each
separated by a boundary condition changing operator.

For bulk CFT, crucial insight is gained by considering the theory on a torus. The
analogous tool for BCFT is to consider the theory on an annulus.6 In analogy with
the torus case, we denote by L ∈ R the width of the annulus and by M ∈ R its length
(in the periodic direction), defining τ = iM/L ∈ iR. The boundary conditions on the
two rims are denoted, symbolically, a and b. Then

Zab(τ ) = Tr
(
qL0−c/24) (4.55)

with q = exp(π iτ). (In the bulk case there is a further “barred” factor under the
trace.) When expanded over the characters

Zab(τ ) =
∑

Δ

n
(ab)
Δ χ(c,Δ)(τ ), (4.56)

one then obtains a linear (rather than quadratic) expression.
Equivalently, one might exchange the space and time direction and view the an-

nulus as a cylinder of circumference ω2 and finite length ω1, with boundary condi-
tions a (resp. b) in the initial (resp. final) state. This leads to

Zab(τ ) = 〈b|eτ−1Hbulk |a〉, (4.57)

where now Hbulk is the Hamiltonian of the bulk CFT propagating between boundary
states |a〉 and 〈b|. The links between bulk and boundary CFT result from a detailed
study of the equivalence between (4.55) and (4.57).

6It makes sense to think of this in the radial quantisation, or transfer matrix, picture. The theories
are initially considered on a semi-infinite cylinder (resp. a strip) with specified transverse boundary
conditions (periodic, resp. non-periodic) and unspecified longitudinal boundary conditions. This
gives access to the transfer matrix eigenvalues. To access the fine structure, such as amplitudes of
the eigenvalues, one must impose periodic longitudinal boundary conditions and take the length of
the cylinder (resp. strip) to be finite.



164 J.L. Jacobsen

4.3.3 Coulomb Gas for Loops on an Annulus

Consider now a loop model defined on an annulus which we shall take as an L ×M

rectangle with coordinates rx ∈ [0,L] and ry ∈ [0,M]. The boundary conditions
are free (f) in the rx -direction and periodic in the ry -direction. Recently, Cardy has
shown how to impose the correct marginality requirement for this geometry.

Consider first the continuum-limit partition function Z = Zff(τ ) from (4.55) in
the limit M/L � 1 of a very long and narrow annulus. The modular parameters
τ = iM/L and q = exp(iπτ) = exp(−πM/L). We expect in this limit that only the
identity operator contributes to Z, and so

Z ∼ q−c/24 ∼ exp

(
πcM

24L

)
. (4.58)

The central charge c is (4.37) from the bulk theory, and in particular is known to
vary with the coupling constant g.

The question then arises how (4.58) is compatible with the continuum-limit ac-
tion (4.29). According to Cardy, the answer is that there is a background magnetic
flux m0, a sort of electromagnetic dual of the background electric charge e0 present
in the cylinder geometry. Thus, in the continuum limit there is effectively a number
(in general fractional) m0 of oriented loops running along the rims of the annulus,
giving rise to a height difference between the left and the right rim. Accepting this
hypothesis, we can write

φ(rx, ry) = φ̃(rx, ry) + πm0rx

L
(4.59)

where φ̃ is a “gauged” height field that still contains the elastic fluctuations but obeys
identical Dirichlet boundary conditions on both rims, say φ̃(0, ry) = φ̃(L, ry) = 0.

By the usual functional integrations, the free field φ̃ contributes q−1/24

P(q)
to Z,

corresponding to c = 1. The last term in (4.59) modifies the action (4.29) by ΔS =
g

4π
(πm0)

2 M
L

and thus multiplies Z by a factor e−ΔS = qgm2
0/4, which correctly

reproduces the contribution of the last term in (4.37) to (4.58) provided that we set

m0 = ± (1 − g)

g
. (4.60)

This value of m0 can be retrieved from a marginality requirement which has
the double advantage of being more physically appealing and of not invoking the
formula (4.37) for c. Indeed, if m0 is too large a pair of oriented loop strands will
shed from the rims, corresponding to a vortex pair of strength m = ±2 situated
at the top and the bottom of the annulus. This vortex pair can then annihilate in
order to reduce the free energy. And if m0 is too small the opposite will occur. The
equilibrium requirement is then that inserting such a vortex pair must be an exactly
marginal perturbation in the RG sense, i.e., the corresponding boundary scaling
dimension is xv = 1.



4 Loop Models and Boundary CFT 165

Fig. 4.8 Hexagonal lattice in
an annular geometry. The top
and the bottom of the figure
are identified. Boundary
edges on the left are shown in
grey [15]

The free energy increase for creating the vortex pair is, by the same gauge argu-
ment as before,

ΔS = g

4π

(
(m0 ± 2)2 − m2

0

)(π

L

)2

ML (4.61)

and noting the factor of 24 between c and the scaling dimension xv, we now have
e−ΔS = q−xv from (4.58), so that

xv = g

4

(
(m0 ± 2)2 − m2

0

) = 1 (4.62)

and we recover (4.60). The ambiguity on the sign in (4.60) will be lifted in
Sect. 4.3.5 below.

4.3.4 BCFT and the O(n) Model

The O(n) model with suitably modified surface couplings permits one to realise
the ordinary, special, and extraordinary surface transitions described qualitatively in
Sect. 4.3.1. To this end, one studies the model defined in the annular geometry of
Sect. 4.3.3.

To be precise, the special transition requires the loops to be in the dilute phase,
and so we shall assume this to be the case throughout Sect. 4.3.4. The results for the
ordinary and extraordinary transitions hold true in the dense phase as well.

A well-studied case is the hexagonal-lattice loop model (4.18). The lattice is
oriented such that one third of the lattice bonds are parallel to the x-axis, as shown
in Fig. 4.8. The fugacity of a monomer is still denoted K in the bulk, but we now
take a different weight Ks for a monomer touching the left rim of the annulus, x = 0.
In contrast, the right rim of the annulus, x = L, enjoys free boundary conditions,
meaning that its surface monomers still carry the usual weight K .

In this section we wish to limit the discussion to the case where only the left
boundary sustains particular ( �= free) boundary conditions; this is sometimes re-
ferred to as mixed boundary conditions. The case where both boundaries are distin-
guished is also of interest.

The loop model described above has been thoroughly studied by Batchelor and
coworkers, in particular using Bethe Ansatz analysis. They find in particular that
when Ks = K the model is integrable and belongs to the universality class of the
ordinary transition, while for

Ks = KS
s = (2 − n)−1/4 (4.63)
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it is also integrable and describes the special transition.7 This is consistent with a
boundary RG scenario, where KS

s is a repulsive fixed point that flows towards either
of the attractive fixed points KO

s < K and KE
s = ∞, the former (resp. latter) point

describing the ordinary (resp. the extraordinary) transition.
This scenario is corroborated by a detailed analysis showing that a perturbation

to the fixed point KE
s is RG irrelevant. Moreover, the operator conjugate to Ks is

obviously the energy density on the boundary. At the special transition, this oper-
ator can be identified with φ(1,3) of weight Δ1,3 = 2

g
− 1, and so this is a relevant

perturbation (i.e., Δ1,3 < 1) only for g > 1 (i.e., in the dilute phase). On the other
hand, the surface energy density has weight Δ = 2 at the ordinary transition, and so
is always irrelevant.

4.3.5 Critical Exponents

Surface watermelon exponents can be defined as in Sect. 4.2.4, the only difference
being that the  legs are inserted at the boundary. We shall denote these exponents
by xO

 , xS
 , xE

 at the ordinary, special, extraordinary surface transition respectively.
Whenever a result applies to any of these transitions, we use the generic notation x′

,
where the prime indicates a surface rather than a bulk exponent.

For the ordinary transition, xO
 can be derived by a slight refinement of the

marginality argument given in Sect. 4.3.3. First recall that in the continuum limit
there is a background flux m0 given by (4.60), corresponding to a (fractional) num-
ber of oriented loop strands running along the rims of the annulus. Suppose now
that we wish to evaluate the scaling dimension xO

 corresponding to having  > 0
non-contractible oriented loop strands running around the periodic direction of the
annulus. This can be done by evaluating the free energy increase ΔS = S − S0 due
to these strands, as in (4.61)

ΔS = g

4π

(
( + m0)

2 − m2
0

)(π

L

)2

ML (4.64)

and using e−ΔS = q−xO
 from (4.58).

The question now arises which sign for m0 to pick in (4.60). With the plus sign
we would have x2 = 1 independently of g, in clear contradiction with numerical
results. Taking therefore the minus sign leads to the result

xO
 = 1

4
g2 − 1

2
(1 − g). (4.65)

The derivation just presented follows the argument of Cardy, but in fact (4.65)
was found a long time before by other means. Duplantier and Saleur were the first to

7Technically speaking this is the mixed ordinary-special transition, but we have simplified the
terminology according to the above remarks.
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propose (4.65) for any , by noting that their numerical transfer matrix results were
in excellent agreement with the following locations in the Kac table

xO
 =

{
Δ1,1+ for the dense O(n) model

Δ1+,1 for the dilute O(n) model
(4.66)

from which (4.65) follows by the identification (4.40). On a more rigorous level,
(4.65) has been established by Bethe Ansatz (BA) techniques.

For the special transition, xS
 does not seem to permit a CG derivation. It is how-

ever known from the BA analysis that one has

xS
 = 1

4
g(1 + )2 − (1 + ) + 4 − (1 − g)2

4g

= Δ1+,2 for the dilute O(n) model (4.67)

in this case.
Alternatively, one may imagine producing the special -leg operator OS

 by fu-
sion of the ordinary -leg operator OO

 and an ordinary-to-special boundary condi-
tion changing operator φOS. The scaling dimension (4.67) pertains to the insertion
of this composite operator at either strip end. Comparing the Kac indices in (4.66)
and (4.67), and using the CFT fusion rules, immediately leads to the identification
φOS = φ1,2. If one wants special boundary conditions on both the left and the right
rim, two insertions of φOS are needed (to change from special to ordinary and back
again). One would then expect Δ1+,3, as is indeed confirmed by the BA analysis.

Finally, the extraordinary transition is rather trivially related to the ordinary tran-
sition. Indeed, for Ks = ∞ the entire left rim of the annulus will be coated by a
straight polymer strand, so that the remaining system (of width L − 1) effectively
sees free boundary conditions—this is sometimes called the teflon effect. Thus, for
 = 0 the coating strand will be the left half of a long stretched-out loop, whose right
half will act as a one-leg operator, and one effectively observes the exponent xO

1 . For
 > 0, one of the legs will act as the coating strand, and one observes xO

−1.

4.4 Temperley-Lieb Algebra

Consider the loop model corresponding to the Q = n2 state Potts model on the
square lattice. The loops live on a tilted square lattice, which we think of as being
built up by a row-to-row transfer matrix.

We impose periodic boundary conditions in the time direction, so that the topol-
ogy is that of an annulus. The loops can then have two different homotopies with
respect to the periodic direction: contractible or non-contractible. In general, we
may define a statistical ensemble by giving a weight n to each contractible loop and
a weight  to each non-contractible loop. The weight of the configuration in Fig. 4.9
is then n2. The model just defined has the algebraic structure of the Temperley-Lieb
algebra.

A more general model in which special weights nl and l are given to loops that
touch at least once the left boundary has been studied by Jacobsen and Saleur. The
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Fig. 4.9 Configuration of
self-avoiding fully-packed
loops on an annulus [18]

algebraic structure of that model is that of the so-called one-boundary Temperley-
Lieb (1BTL) algebra. One can similarly define a 2BTL loop model with 8 different
loop weights, depending on their homotopy and which boundaries they touch. This
has been studied in details by Dubail, Jacobsen, and Saleur.

4.4.1 Usual TL Algebra

We now consider in details the case of the usual TL algebra; we shall sometimes
find it convenient to refer to it as the 0BTL algebra.

Consider a system of N strands labelled i = 1,2, . . . ,N . The lattice is built up
from elementary generators ei , acting on strands i and i + 1, as shown in Fig. 4.10.
More precisely, in the selfdual (hence critical, if 0 ≤ n ≤ 2) case where all local
vertex weights are unity, the transfer matrix reads

T =
(

N/2−1∏

j=1

(1 + e2j )

)(
N/2∏

j=1

(1 + e2j−1)

)
. (4.68)

The generators ei satisfy the relations

e2
i = nei

eiei±1ei = ei (4.69)

[ei, ej ] = 0 for |i − j | ≥ 2

which can be verified simply by drawing what they mean in terms of loops.
The identity and the N − 1 generators ei define the Temperley-Lieb algebra

T LN(n), subject to the above relations. Graphically, the application of the last two
relations allows to deform and diminish the size of a loop, and when it has reached
its minimal possible size it can be taken away and replaced by the weight n due to
the first relation.

4.4.1.1 States and Transfer Matrix Decomposition

The transfer matrix T acts on states which can be depicted graphically as non-
crossing link patterns within a slab bordered by two horizontal rows, each of N
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Fig. 4.10 From left to right: identity I and Temperley-Lieb generator ei acting on two strands i

and i + 1; left and right boundary identity operator [18]

points. The complete list of states for N = 4 is shown in Fig. 4.11. The bottom
(resp. top) row of the slab corresponds to time t = 0 (resp. t = t0); the transfer ma-
trix propagates the states from t0 to t0 + 1 and thus acts on the top of the slab only.

A link joining the top and the bottom of the slab is called a string, and any other
link is called an arc. We denote by s the number of strings in a given state. Any state
can be turned into a pair of reduced states by cutting all its strings and pulling apart
the upper and lower parts. For convenience, a cut string will still be called a string
with respect to the reduced state. The complete list of reduced states for N = 4 is
shown in Fig. 4.12.

Conversely, a state can be obtained by adjoining two reduced states, gluing to-
gether their strings in a unique fashion. Thus, if we define d2j as the number of
reduced states with s = 2j strings, the number of states with s = 2j strings is sim-
ply d2

2j .
The partition function ZN,M on an annulus of width N strands and height M

units of time cannot be immediately expressed in terms of reduced states only, since
these do not contain the information about how many loops (contractible or non-
contractible) are formed when the periodic boundary condition is imposed. We can
however write it in terms of states as

ZN,M = 〈u|T M |v〉. (4.70)

At time t0 = 0 the top and the bottom of the slab must be identified. Therefore, the
entries of the right vector |v〉 are one whenever the corresponding state contains no
arcs, and each of its links connects a point in the bottom row to the point immedi-
ately above it in the top row; all other entries of |v〉 are zero. At time t0 = M the top
and the bottom of the slab must be re-glued. Therefore, the left vector 〈u| is obtained
by identifying the top and bottom rows for each state; counting the number of loops
of each type gives the corresponding weight as a monomial in the loop weights n

and .
The reduced states can be ordered according to a decreasing number of strings.

The states can be ordered first according to a decreasing number of strings, and
next, for a fixed number of strings, according to its bottom half reduced state. These
orderings are brought out by the rows in Figs. 4.11–4.12.

With this ordering of the states, T has a block-wise lower triangular structure in
the basis of reduced states, since the generator ei can annihilate two strings (if their
position on the top of the slab are i and i + 1) but cannot create any strings.

In the basis of states, T is block-wise lower triangular with respect to the number
of strings, for the same reason. Each block on the diagonal in this decomposition
corresponds to a definite number of strings. The block corresponding to s = 2j

strings is denoted T̃j . But since T acts only on the top of the slab, each T̃j = Tj ⊕
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Fig. 4.11 List of all 0BTL
states on N = 4 strands. Each
row corresponds to a definite
sector of the transfer
matrix [18]

Fig. 4.12 List of all 0BTL
reduced states on N = 4
strands. Each row
corresponds to a definite
sector of the transfer
matrix [18]

. . . ⊕ Tj is in turn a direct sum of dj identical blocks Tj which correspond simply
to the action of T on the reduced states with 2j strings.

In particular, the eigenvalues of T are the union of the eigenvalues of Tj , where
the Tj now act in the much smaller basis of reduced states. This observation is
particularly useful in numerical studies.

4.4.1.2 The Dimensions dL and DL

In spite of the periodic boundary conditions, ZN,M is obviously not a usual matrix
trace. It can however be decomposed on standard traces by a combinatorial construc-
tion due to Richard and Jacobsen. The generalisation to the case with boundaries
was obtained by Jacobsen and Saleur.

We take for now the width of the annulus N = 2N2 to be even. For each transfer
matrix block Tj we define the corresponding character as

Kj = Tr(Tj )
M, (4.71)

where we stress that the trace is over reduced states. Obviously we have

Kj =
d2j∑

i=1

(
λ

(j)
i

)M
, (4.72)
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Fig. 4.13 Construction of invariant reduced states. (a) A configuration contributing to Z2 with
N2 = 6, here depicted as a state. (b) Application on the bottom of the reduced state corresponding
to the top half of (a). (c) After removal of the arcs one has simply 2j links

where λ
(j)
i are the eigenvalues of Tj . The expression of the partition function in

terms of transfer matrix eigenvalues is more involved, due essentially to the non-
local nature of the loops, and reads

ZN,M :=
N2∑

j=0

Zj =
N2∑

j=0

D2jKj , (4.73)

where Zj is the annulus partition function constrained to have exactly L = 2j non-
contractible loops, and D2j are some eigenvalue amplitudes to be determined. To
be more precise, we decompose Zj in terms of Kk as follows

Zj =
N2∑

k=j

D(k, j)2kKk

D2j =
j∑

i=0

D(j, i)2i

(4.74)

and consider next the inverse decomposition

Kk =
N2∑

j=k

E(j, k)
Zj

2j
. (4.75)

The determination of the coefficients E(j, k) can be turned into a combinatorial
counting problem as follows. First, recall that the characters Kk were defined as
traces over reduced states. We must now determine how many times each Zj occurs
within a given trace. Consider therefore some configuration C on the annulus that
contributes to Zj . An example with j = 2 and N2 = 6 is shown in Fig. 4.13a. It
is convenient not to represent the contractible loops within the configuration, i.e.,
to depict it as a state. This configuration will contribute to the trace only over such
reduced states S that are left invariant by the action of the configuration. Therefore,
S must contain the same arcs as does C in its top row (see Fig. 4.13b). It suffices
therefore to determine the parts of S which connect onto the starting points of
the 2j non-contractible lines (see Fig. 4.13c). Since the goal is to determine the
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contribution to Kk , precisely 2k strings and j − k arcs must be used. In other words,
E(j, k) is precisely the number of reduced states on 2j strands, and using 2k strings.

Now let

E(k)(z) =
∞∑

j=0

E(j, k)zj (4.76)

be the corresponding generating function, where z is a formal parameter represent-
ing the weight of an arc, or of a pair of strings. When k = 0, a reduced state with no
strings is either empty, or has a leftmost arc which divides the space into two parts
(inside the arc and to its right) each of which can accommodate an independent arc
state. The generating function f (z) = E(0)(z) therefore satisfies f (z) = 1 + zf (z)2

with regular solution

f (z) = 1 − √
1 − 4z

2z
=

∞∑

j=0

(2j)!
j !(j + 1)!z

j . (4.77)

When k �= 0, the strings simply divide the space into 2k + 1 parts each of which
contains an independent arc state. Therefore,

E(k)(z) = zkf (z)2k+1 =
∞∑

j=k

[(
2j

j + k

)
−

(
2j

j + 1 + k

)]
zj (4.78)

and in particular we have

dL = E

(
N

2
,
L

2

)
=

(
N

(N + L)/2

)
−

(
N

1 + (N + L)/2

)
. (4.79)

Note that dL depends on N , but we usually will not mention this explicitly.
Inversion of the linear system (4.75) finally leads to

D(j, k) = (−1)j+k

(
j + k

2k

)
, (4.80)

which can also be written

DL = UL(/2), (4.81)

where Uk(x) is the well-known kth-order Chebyshev polynomial of the second kind,
UL(cos θ) = sin(L+1)θ

sin θ
.

The total number of states is
N2∑

j=0

d2j =
(

N

N/2

)
. (4.82)

One should also note the sum rule
N2∑

j=0

d2jD2j = N (4.83)

which expresses the fact that there are  degrees of freedom living on each site.



4 Loop Models and Boundary CFT 173

The representation-theory of the TL algebra is well-known. For generic values
of n, the irreducible representations are labelled by a single integer L = 0,2, . . . ,N

which counts the number of non-contractible (or “through”) lines, and have dimen-
sion equal to the multiplicity of the spin L

2 representation in a chain of N spins 1/2.
This dimension is easily seen to be dL of (4.79). Meanwhile, DL is a q-dimension
for the corresponding commutant, which is the quantum algebra Uq(sl2) with
q + q−1 = .

4.4.2 One-Boundary TL Algebra

In the one-boundary case, contractible loops touching at least once the left boundary
receive a weight nl which is different from the weight n of a bulk loop. Coding this
algebraically requires the introduction of an additional generator bl acting on the
(left) boundary, such that

b2
l = bl

e1ble1 = nle1 (4.84)

[bl, ei] = 0 for i = 2,3, . . . ,N − 1.

These relations, with (4.69), define the one-boundary Temperley-Lieb (1BTL) al-
gebra.

Graphically, the action of bl can be depicted by adding a blob (shown in the
following figures as a circle) to the link that touches the boundary. The first relation
in (4.84) means that all the anchoring points of a boundary touching loop, except
the last one, can be taken away. The third relation and (4.69) allow to deform and
diminish the size of a boundary loop (while keeping it glued to one of its anchoring
points on the boundary), and when it has reached its minimal possible size it can be
taken away and replaced by the weight nl due to the second relation of (4.84).

The transfer matrix can be taken as

T =
(

N/2−1∏

j=1

(1 + e2j )

)(
N/2∏

j=1

(1 + e2j−1)

)
(λl1 + bl) (4.85)

where a non-zero value of λl would mean that with some probability a loop may
come close to the boundary without actually touching it. We shall mostly set λl = 0
in what follows. This has the advantage of reducing the dimension of the space on
which T acts, since then the leftmost link in any (reduced) state may be taken to be
blobbed. The algebraic results for the case λl �= 0 are simply related to those for the
case λl = 0, and we shall discuss them in due course.

4.4.2.1 States and Transfer Matrix Decomposition

The states of the transfer matrix are as in the 0BTL case, except that links which are
exposed to the boundary (i.e., which are not to the right of the leftmost string) may
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Fig. 4.14 List of all 1BTL
states on N = 4 strands (with
λl = 0). Each row
corresponds to a definite
sector of the transfer
matrix [18]

Fig. 4.15 List of all 1BTL
reduced states on N = 4
strands (with λl = 0). Each
row corresponds to a definite
sector of the transfer
matrix [18]

be blobbed. Also, any link touching the leftmost site (i = 1) is necessarily blobbed,
since we have taken λl = 0 in (4.85).

The states for N = 4 are shown in Fig. 4.14, and the corresponding reduced
states are given in Fig. 4.15. When a blobbed and an un-blobbed link are adjoined
(e.g., when transferring, or when forming an inner product) the result is a blobbed
(restricted) link.

The decomposition of the transfer matrix into sectors (blocks) takes place exactly
as in the 0BTL case, with one important addition. Namely, once the number of
strings s = 2j has been fixed, the blocks Tj are block-wise 2 × 2 lower triangular
with respect to the blobbing status of the leftmost string. Indeed, acting by bl can
blob the leftmost string, but a string—qua a conserved object with respect to Tj —
cannot subsequently be un-blobbed. The elementary blocks are therefore T b

j and
T u

j , where the superscript indicates the blobbing status (b for blobbed, and u for
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un-blobbed) of the leftmost string. With λl = 0, there is no un-blobbed sector with
j = N/2, and by convention the sector with j = 0 is un-blobbed (for any λl). In
Figs. 4.14–4.15, the second rows give the unique un-blobbed state with j = 1.

4.4.2.2 The Dimensions dα
L and Dα

L

Using similar combinatorial techniques as in the usual TL case, one establishes that

du
L = db

L =
(

N

(N − L)/2

)
(for λl �= 0) (4.86)

so that the total number of states is

N2∑

j=0

du
2j +

N2∑

j=1

db
2j = 2N. (4.87)

After some work on generating function one arrives at

Du
L = UL(/2) − lUL−1(/2)

Db
L = lUL−1(/2) − UL−2(/2)

(4.88)

and the sum-rule becomes

N2∑

j=0

du
2jD

u
2j +

N2∑

j=1

db
2jD

b
2j = N . (4.89)

4.5 Exact CFT Partition Functions

By combining the main results of the preceding two sections, it is possible to con-
struct the exact continuum-limit partition functions of the loop models defined on
an annulus of size L × M . The periodic direction is that of size M .

4.5.1 0BTL Loop Model

We recall that this model is defined by giving a weight n = −2 cos(πg) to each
contractible loop, and a (possibly different) weight n̄ = 2 cos(πe0) to each non-
contractible loop.

According to (4.56) we have

Z := Zff(q) =
∑

Δ

nΔχ(c,Δ)(q) (4.90)
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where the sum is over the boundary scaling dimensions x = Δ. Here χ(c,h)(q) is the
generic character

χ(c,Δ)(τ ) = TrqL0−c/24 = qΔ−c/24

P(q)
, (4.91)

where the latter expression stems from the fact that the number of descendents of
|Δ〉 at level k in a generic Virasoro module is just the number of integer partitions
of k. Explicitly

1

P(q)
:=

∞∏

k=1

1

1 − qk
=

∞∑

k=0

p(k)qk. (4.92)

We recall that the modular parameter is q = exp(iπτ) = exp(−πM/L). The degen-
eracy factor nΔ states how many times a given character appears in the partition
function, and as usual for non-minimal theories it needs not in general be an inte-
ger. We omit in the following the subscript ff which reminds us that the boundary
conditions on both rims of the annulus are free.

The CFT partition function is then

Z[g, e0] = q−c/24

P(q)

∑

∈Z

sin((1 + )πe0)

sin(πe0)
q

g2

4 − (1−g)
2 . (4.93)

The expression (4.93) was first obtained by Saleur and Bauer, using techniques
of integrability and quantum groups. It was later re-derived and discussed by Cardy
from a Coulomb gas point of view. We hold by now all the necessary ingredients to
prove this relation:

1. The front factor q−c/24

P(q)
is the usual contribution from the free boson, viz., the

“gauged” height field φ̃ of (4.59).

2. The qxO
 factor codes the critical exponents of the -leg (watermelon) operators

at the ordinary surface transition.
3. The degeneracy factor

n = U(n̄/2) = sin((1 + )πe0)

sin(πe0)
(4.94)

comes from the algebraic decomposition of the TL (Markov) trace over ordinary
matrix traces.

4. The sum
∑

∈Z is over the number of non-contractible lines on the annulus.

The attentive reader may object that (1) the expansion (4.90) should not be over
generic characters, but the degenerate ones

Kr,s = qΔr,s − qΔr,−s

qc/24P(q)
, (4.95)

and (2) the sum in (4.93) should be over  ≥ 0 and not  ∈ Z. While these observa-
tions are certainly correct, a little analysis shows that taking into account (1) and (2)
leads to exactly the same result (4.93).
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4.5.2 A Percolation Crossing Formula

The result (4.93) contains a lot of precious information in a very compact form. To
illustrate the scope of this expression, we consider the limit n → 1, which corre-
sponds to bond percolation on the square lattice. In this case c = 0.

The partition function itself is Z[g = 2
3 , e0 = 1

3 ]. The part of (4.93) under the
summation is

∑

∈Z

sin((1 + )π/3)

sin(π/3)
q

2
6 − 

6 . (4.96)

The contributions are only non-zero in the following cases

 = 6r: q6r2−r

 = 6r − 2: −q6r2−5r+1

 = 6r + 1: q6r2+r

 = 6r + 3: −q6r2+5r+1.

Let us recall the Euler pentagonal number theorem:

P(q) =
∞∏

k=1

(
1 − qk

) =
∞∑

k=−∞
(−1)kqk(3k−1)/2. (4.97)

A term with even k = 2r reads q6r2−r , and a term with odd k = 2r + 1 reads
q6r2+5r+1. Thus regrouping the contributions with  = 6r and  = 6r + 3 the above
sum is simply P(q). One finds the same result by regrouping the contributions with
 = 6r − 2 and  = 6r + 1.

So seemingly Z[g = 2
3 , e0 = 1

3 ] = 2. But taking into account that the equivalence
between the TL loop model and the Potts model requires an even number of strands
N—whence also  is even—we have simply

Z

[
g = 2

3
, e0 = 1

3

]
= 1. (4.98)

Consider now the probability p that a percolation cluster connects the two rims
of the annulus. This happens if and only if there are no loops wrapping around the
periodic direction. Such loops can be suppressed by setting e0 = 1

2 . In view of the
trivial normalisation (Z = 1) we have then

p = Z

[
g = 2

3
, e0 = 1

2

]

= 1

P(q)

∑

∈Z
sin

(
(1 + )

π

2

)
q

p(p−1)
6 .

The degeneracy factor is +1 if  = 4r and −1 if  = 4r + 2. Thus

p = 1

P(q)

∑

r∈Z

(
q

4r(4r−1)
6 − q

(4r+2)(4r+1)
6

)
.
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This can in turn be rewritten by using the Jacobi triple product formula

∑

k∈Z
(−1)kakq

k(k−1)
2 =

∞∏

k=1

(
1 − aqk−1)(1 − a−1qn

)(
1 − qn

)
(4.99)

in terms of the Dedekind function η(τ) = q1/24(P (q))−1 as

p = η
(− 1

3τ

)
η
(− 4

3τ

)

η
(− 1

τ

)
η
(− 2

3τ

) =
√

3

2

η(3τ)η
( 3τ

4

)

η(τ)η
( 3τ

2

) . (4.100)

For a thin annulus, q = exp(−πM/L) → 0, we have 1 − p ∼ q1/3. In terms of
the conjugate modulus, q̃ = exp(−2πL/M), a long cylinder corresponds to q̃ → 0.
In that limit

p ∼
√

3

2
q̃

5
48 , (4.101)

where we recognise the magnetic exponent of the Q → 1 state Potts model. The
result (4.100) can be seen as expressing all corrections to scaling for this well-known
result.

4.5.3 1BTL Loop Model

Still working on the annulus, Jacobsen and Saleur have defined a more general
model in which bulk loops have fugacity n or n̄, and loops touching the left bound-
ary have weight n1 or n1, where in all cases the overline refers to non-contractible
loops (i.e., loops that are not homotopic to a point). This is illustrated in Fig. 4.16.

We have seen above how the transfer matrix T of any loop model on the annulus
can be decomposed into blocks T labelled by the number of non-contractible loops
. For the 1BTL loop model one may further decompose T into the blobbed (resp.
un-blobbed) sector T b

 (resp. T u
 ) in which the leftmost non-contractible loop is

required (resp. forbidden) to touch the left rim of the annulus. Indeed, since a non-
contractible loop is conserved by definition, once it has been blobbed (i.e., touched
the boundary) it cannot subsequently be un-blobbed. Therefore, T is upper block-
triangular in the basis {|b〉, |u〉} and the previous argument applies mutatis mutandis.

Parameterising

n = 2 cosγ

n1 = sin[(r1 + 1)γ ]
sin(r1γ )

(4.102)

the central charge is (4.38) with γ = π
m+1 . The parameter r1 ∈ (0,m + 1) is in

general a real number. The watermelon exponents are then

xO
 (n,n1) = Δr1,r1± (4.103)

where the upper (resp. lower) sign is for the blobbed (resp. un-blobbed) sector.
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Fig. 4.16 Continuum-limit view of the four different types of loops, distinguished by their colours,
in the 1BTL loop model. In this figure the annulus has been conformally mapped to the plane, and
the “left rim” referred to in the text has become the outer rim. Contractible (resp. non-contractible)
loops are those that do not (resp. that do) wrap around the hole in the annulus. Bulk (resp. bound-
ary) loops are those that do not (resp. that do) touch the outer rim at least once. Each bulk (resp.
boundary) loop has weight n (resp. n1) if it is contractible, and n̄ (resp. n1) if it is non-contractible

The result (4.103) follows integrability results for the corresponding XXZ spin
chain with boundary terms when r1 and m are integers. There is ample numerical
evidence that it holds also for non-integer values. Deriving (4.103) from Coulomb
gas arguments is an interesting open problem.

The 1BTL loop model contains the ordinary O(n) loop model as the special case
n1 = n, but it is clear that its transfer matrix must contain many more states in order
to produce the correct weights for n1 �= n. Therefore, the conformal towers must
be more densely filled, and the spectrum generating functions must contain fewer
degeneracies. Since the loop model characters (4.95) contain just one subtraction,
it seems reasonable that the 1BTL characters for generic n1 �= n will not involve
any subtractions, i.e., they must be the generic characters (4.91). This is indeed con-
firmed by numerical diagonalisation of the transfer matrix. Combining this with the
result for the conformal weights (4.103), we conclude that the spectrum-generating
functions for the blobbed and un-blobbed sectors read

Zb
 = qΔr,r+−c/24

P(q)
, Zu

 = qΔr,r−−c/24

P(q)
. (4.104)

To find out how to combine these sectors to obtain the complete partition func-
tion Z, one simply uses the multiplicities Db and Du derived in the preceding sec-
tion. Parameterising the weights of non-contractible loops as

n̄ = 2 coshα, n1 = sinh(α + β)

sinhβ
(4.105)

the result reads

Db
 = sinh(α + β)

sinhβ
, Du

 = sinh(α − β)

sinh(−β)
. (4.106)
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Supposing L is even, and setting  = 2j , the results (4.104) and (4.106) lead
to

Z = q−c/24

[ ∞∑

j=0

sinh(2jα + β)

sinhβ

qΔr,r+2j

P (q)
−

∞∑

j=1

sinh(2jα − β)

sinhβ

qΔr,r−2j

P (q)

]
.

(4.107)

4.5.4 2BTL Loop Model

The 1BTL loop model can be generalised to the case where both boundaries of the
annulus are distinguished. In this 2BTL loop model, bulk loops have a weight n,
while boundary loops touching only the left (resp. right) boundary have weight n1

(resp. n2), and loops touching both boundaries have weight n12.
This model is equivalent to a Potts model in which bulk spins have Q = n2 states,

while spins on the left (resp. right) boundary are constrained to a smaller num-
ber Q1 = nn1 (resp. Q2 = nn2) of states, of which there are Q12 = nn12 common
states.

The following parameterisation turns out to be instrumental for further study:

n = 2 cosγ

n1 = sin[(r1 + 1)γ ]
sin(r1γ )

n2 = sin[(r2 + 1)γ ]
sin(r2γ )

n12 = sin[(r1 + r2 + 1 − r12)
γ
2 ] sin[(r1 + r2 + 1 − r12)

γ
2 ]

sin(r1γ ) sin(r2γ )
.

(4.108)

The full meaning of this parameterisation only becomes clear within the represen-
tation theory of the underlying algebra.

When defining the 2BTL loop model on an annulus of even width L, a non-
contractible loop cannot touch both rims of the annulus. We thus need only the
following additional three weights for non-contractible loops:

n̄ = 2 cosχ

n1 = sin[(u1 + 1)χ]
sin(u1χ)

(4.109)

n2 = sin[(u2 + 1)χ]
sin(u2χ)

.

The exact continuum limit partition function, expressed in terms of all these
seven weights, has been derived by Dubail, Jacobsen and Saleur:
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Z = q−c/24

P(q)

∑

n∈Z

qΔr12−2n,r12

+ q−c/24

P(q)

∑

j≥1

∑

n≥0

sin[(u1 + u2 − 1 + 2j)χ] sinχ

sin(u1χ) sin(u2χ)
qΔr1+r2−1−2n,r1+r2−1+2j

+ q−c/24

P(q)

∑

j≥1

∑

n≥0

sin[(−u1 + u2 − 1 + 2j)χ] sinχ

sin(−u1χ) sin(u2χ)
qΔ−r1+r2−1−2n,−r1+r2−1+2j

+ q−c/24

P(q)

∑

j≥1

∑

n≥0

sin[(u1 − u2 − 1 + 2j)χ] sinχ

sin(u1χ) sin(−u2χ)
qΔr1−r2−1−2n,r1−r2−1+2j

+ q−c/24

P(q)

∑

j≥1

∑

n≥0

sin[(−u1 − u2 − 1 + 2j)χ] sinχ

sin(−u1χ) sin(−u2χ)
qΔ−r1−r2−1−2n,−r1−r2−1+2j .

(4.110)

The five-term structure of this expression permits one to read off the principal
critical exponents. The trigonometric factors inside the four last terms are the eigen-
value amplitudes, which can be derived by generalising the combinatorial derivation
of the preceding section.

Obviously, an expression like (4.110) contains a wealth of exact probabilistic in-
formation, which can be extracted explicitly for any special case of interest (such
as percolation). Moreover, it determines the complete operator content of the two-
boundary model, and the precise fusion rules of two one-boundary CBL type bound-
ary condition changing operators.

4.6 Notes and References

General background for the topics of this chapter is given in [15, 27] and the ‘yellow
bible’ [10].

The Q-states Potts model [29] and its different re-formulations for continuous
values of Q described in Sect. 1 appeared in [2, 11, 14, 20], and of course in [1].
The Coulomb gas construction described in Sect. 2 arose in [19] and was worked out
in [7, 8, 24, 25], see also the review [26]. The relationship with 2D CFT was made
more precise in [9] and applications to polymer physics were readily developed [13].
The last part of this section is based on [16, 21, 22]. Boundary CFT as described
in Sect. 3 appeared in Cardy’s articles [3–6], see also [33]. The Temperley-Lieb
algebra discussed in Sect. 4 appeared in [32]. This section is based on [17, 18, 23,
28, 30]. Section 5 is based on [6, 12, 17, 31].

References

1. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London
(1982)



182 J.L. Jacobsen

2. Baxter, R.J., Kelland, S.B., Wu, F.Y.: Equivalence of the Potts model or Whitney polynomial
with an ice-type model. J. Phys. A, Math. Gen. 9, 397 (1975)

3. Cardy, J.L.: Conformal invariance and surface critical behaviour. Nucl. Phys. B 240, 514
(1984)

4. Cardy, J.L.: Operator content of two-dimensional conformally invariant theories. Nucl. Phys.
B 270, 186 (1986)

5. Cardy, J.L.: Effect of boundary conditions on the operator content of two-dimensional confor-
mally invariant theories. Nucl. Phys. B 275, 200 (1986)

6. Cardy, J.L.: The O(n) model on the annulus. J. Stat. Phys. 125, 1 (2006)
7. den Nijs, M.: Extended scaling relations for the magnetic critical exponents of the Potts model.

Phys. Rev. B 27, 1674 (1983)
8. den Nijs, M.: Extended scaling relations for the chiral and cubic crossover exponents. J. Phys.

A, Math. Gen. 17, 295 (1984)
9. di Francesco, P., Saleur, H., Zuber, J.B.: Relations between the Coulomb gas picture and

conformal invariance of two-dimensional critical models. J. Stat. Phys. 49, 57 (1987)
10. di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field-Theory. Springer, Heidelberg

(1997)
11. Domany, E., Mukamel, D., Nienhuis, B., Schwimmer, A.: Duality relations and equivalences

for models with O(n) and cubic symmetry. Nucl. Phys. B 190, 279 (1981)
12. Dubail, J., Jacobsen, J.L., Saleur, H.: Conformal two-boundary loop model on the annulus.

Nucl. Phys. B 813, 430 (2009)
13. Duplantier, B., Saleur, H.: Exact critical properties of two-dimensional dense self-avoiding

walks. Nucl. Phys. B 290, 291 (1987)
14. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model. I. Introduction and relation to

other models. Physica 57, 536 (1972)
15. Jacobsen, J.L.: Conformal field theory applied to loop models. In: Guttmann, A.J. (ed.) Poly-

gons, Polyominoes and Polycubes. Lecture Notes in Physics, vol. 775, pp. 347–424. Springer,
Heidelberg (2009)

16. Jacobsen, J.L., Kondev, J.: Field theory of compact polymers on the square lattice. Nucl. Phys.
B 532, 635 (1998)

17. Jacobsen, J.L., Saleur, H.: Conformal boundary loop models. Nucl. Phys. B 788, 137 (2008)
18. Jacobsen, J.L., Saleur, H.: Combinatorial aspects of boundary loop models. J. Stat. Mech.

P01021 (2008)
19. José, J.V., Kadanoff, L.P., Kirkpatrick, S., Nelson, D.R.: Renormalization, vortices, and

symmetry-breaking perturbations in the two-dimensional planar model. Phys. Rev. B 16, 1217
(1977)

20. Kasteleyn, P.W., Fortuin, C.M.: Phase transitions in lattice systems with random local proper-
ties. J. Phys. Soc. Jpn. 26(Suppl.), 11 (1969)

21. Kondev, J., Henley, C.L.: Four-coloring model on the square lattice: a critical ground state.
Phys. Rev. B 52, 6628 (1995)

22. Kondev, J.: Liouville field theory of fluctuating loops. Phys. Rev. Lett. 78, 4320 (1997)
23. Martin, P.P., Saleur, H.: The blob algebra and the periodic Temperley-Lieb algebra. Lett. Math.

Phys. 30, 189 (1994)
24. Nienhuis, B.: Exact critical point and critical exponents of O(n) models in two dimensions.

Phys. Rev. Lett. 49, 1062 (1982)
25. Nienhuis, B.: Critical behaviour of two-dimensional spin models and charge asymmetry in the

Coulomb gas. J. Stat. Phys. 34, 731 (1984)
26. Nienhuis, B.: Coulomb gas formulations of two-dimensional phase transitions. In: Domb, C.,

Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena, vol. 11. Academic Press,
London (1987)

27. Nienhuis, B.: Exact methods in low-dimensional statistical physics and quantum computing.
In: Jacobsen, J., et al. (eds.) Les Houches Summer School, Session LXXXIX. Oxford Univer-
sity Press, London (2009)

28. Pasquier, V., Saleur, H.: Common structures between finite systems and conformal field theo-
ries through quantum groups. Nucl. Phys. B 330, 523 (1990)



4 Loop Models and Boundary CFT 183

29. Potts, R.B.: Some generalized order-disorder transformations. Math. Proc. Camb. Philos. Soc.
48, 106 (1952)

30. Richard, J.-F., Jacobsen, J.L.: Character decomposition of Potts model partition functions, I:
Cyclic geometry. Nucl. Phys. B 750, 250 (2006)

31. Saleur, H., Bauer, M.: On some relations between local height probabilities and conformal
invariance. Nucl. Phys. B 320, 591 (1989)

32. Temperley, H.N.V., Lieb, E.H.: Relations between the percolation and colouring problem and
other graph-theoretical problems associated with regular planar lattices: some exact results for
the percolation problem. Proc. R. Soc. Lond. A 322, 251 (1971)

33. Yung, C.M., Batchelor, M.T.: O(n) model on the honeycomb lattice via reflection matrices:
Surface critical behaviour. Nucl. Phys. B 453, 552 (1995)



Index

A
ADE classification, 25
Admissible boundary condition, 54
Affine Lie algebra, 30
Altitude, 71
Amplitude-exponent relation, 7, 42
Anomaly, 12
Atom, 105

B
Background electric charge, 154
Bessel process, 92
Bieberbach conjecture, 76
Blob algebra, 173
Boltzmann weight, 1, 65
Boson, 152

compactified, 152
free, 27, 152

Boundary, 54, 77
Boundary CFT, 38
Boundary condition, 43

admissible, 54
Boundary condition changing operator, 43, 163
Boundary conditions

fluctuating, 118
Boundary conformal field-theory, 40, 160
Boundary hexagon, 55
Boundary operator, 162
Boundary primary operator, 97
Boundary state, 44
Brownian motion, 53, 125

C
Capacity, 79
Cardy’s formula, 45, 108, 162
Casimir effect, 13
Cayley function, 123

Central charge, 12–15, 20, 30, 31, 34, 42, 97
Character, 21, 24
Charge, 32
Chordal SLE, 102, 113, 121
Cluster, 143
Cluster algorithm, 120
Compactification, 34
Compactification radius, 34
Compactified boson, 152
Complex loop ensemble, 148
Configuration, 65
Conformal, 56
Conformal boundary condition, 161

Jacobsen and Saleur, 178
Conformal field-theory, 8

boundary, 40
Conformal invariance, 9, 88, 121–123

correlators, 26
Laplace equation, 4

Conformal transformation, 3
analytic, 4
Cayley, 78, 123
energy-momentum tensor, 13
generator, 4
logarithmic, 6, 42, 123
projective, 4
Schwarz-Christoffel, 123

Conformal Ward identity, 8
surface, 42, 161

Conformal weight, 4, 97
Coordination number, 68
Correlation function, 142

and martingales, 104
surface, 41
three-point, 5
two-point, 2, 5

Coset construction, 20

M. Henkel, D. Karevski (eds.), Conformal Invariance: an Introduction to Loops,
Interfaces and Stochastic Loewner Evolution, Lecture Notes in Physics 853,
DOI 10.1007/978-3-642-27934-8, © Springer-Verlag Berlin Heidelberg 2012

185

http://dx.doi.org/10.1007/978-3-642-27934-8


186 Index

Coulomb gas, 27, 36
boundary, 159
bulk, 151
screening in, 155

Coupling, 60
Critical exponent, 3

surface, 39
Critical phenomena, 2

surface, 38, 160
Critical point, 1
Critical value, 56
Crossing probability, 63
Current, 28
Current algebras, 30
Curve, 121
Cycle, 72

D
De Branges’ theorem, 76
Dedekind function, 178
Diagonal model, 44, 163
Diffusion constant, 52, 91, 125, 128, 130,

132–134
Diffusion-limited aggregation, 75
Dilatation, 2
Disjoint cycles, 72
DLA, 75
Domain, 54, 121
Domain Markov property, 89, 90, 121
Driving function, 85, 125
Dual graph, 143
Dual state, 17
Duality, 93
Dynamical exponent, 127

E
Edge, 65
Edwards-Anderson model, 133
Energy-momentum tensor, 8, 30, 37

conformal transformation, 13
improved, 9
mode expansion, 15
OPE, 12
properties, 9

Euler pentagonal number theorem, 177
Exploration hull, 59
Exploration process, 57, 59
Extraordinary transition, 160

F
Filtration, 105
Finite-size scaling, 7, 14, 43
Fjord, 120
Fluctuating boundary conditions, 118

Fluctuation-dissipation theorem, 2
Fortuin-Kasteleyn

O(n) model, 146
Potts model, 143

Fortuin-Kasteleyn cluster, 118, 142
Fractal dimension, 58, 92, 128, 132, 134, 158

percolation cluster, 159
percolation hull, 158
percolation red bonds, 158

Free boson, 14, 26–28, 152
compactified, 35

Free fermion, 14
Fusion algebra, 23, 45
Fusion coefficient, 45

G
Gibbs potential, 1
Graph, 141

connected component, 143
dual, 143
edge set, 141
medial, 143
vertex set, 141

Graphene, 14
Growth phenomena, 51
Growth process, 81

H
Harris criterion, 131
Height model, 150
Hermiticity condition, 17
Hexagonal domain, 54
Highest-weight representations, 97
Highest-weight state, 15, 16
Highest-weight vector, 97
Hitting probability, 99
Hull, 79, 89
Hydrodynamic normalisation, 79
Hyperscaling, 2

I
Ideal states, 152
Increasing property, 60
Inner hexagon, 55
Interface, 56, 64, 115, 117
Interior point, 54
IRF model, 150
Irrelevant, 3
Ishibashi state, 44
Ising antiferromagnet

surface criticality, 39
Ising model, 1, 20, 25, 65, 114, 128, 129

defect line, 46
surface, 45

Itô’s formula, 102, 103



Index 187

J
Jacobi triple product formula, 178

K
Kac determinant, 18
Kac formula, 19

Coulomb gas, 37
Kac table, 20, 99

non-unitary, 27
Kac-Moody algebra, 29
Kac’s labels, 99
Kagomé lattice, 144
Kennedy algorithm, 127

L
Ladder operator, 15, 16
Left-passage probability, 128
LERW, 113
Level, 16, 30
Linking, 145
Liouville field-theory, 153, 154

marginality requirement, 155
Liouville term, 154
Liouville’s theorem, 10
Local growth, 85
Locality, 93

exploration process, 57
Locality property, 93
Loewner chain, 82, 83
Loop, 147
Loop algebra, 4
Loop description, 65
Loop ensemble

complex, 148
real, 147

Loop representation, 143, 145
O(n) model, 146
Potts model, 145

Loop-erased random walk, 66, 68, 113
simulation, 69

Loop-erased sequence, 67
Loop-erasing algorithm, 67

M
Marginal, 3, 33, 155
Martingale, 98, 104
Measure space, 60
Measure theory, 104
Medial graph, 143
Medial lattice, 117
Method of images, 161
Minimal model, 123

non-unitary, 27
unitary, 20

Mirror operator, 161
Modular group, 24
Modular invariance, 24, 35
Modular invariant partition function, 24, 35

diagonal, 25
Modular parameter, 24, 35
Modular transformation, 24, 26

N
Neutrality condition, 32
Non-renormalisation theorem, 12
Normal ordering, 30
Normal transition, 38, 160
Null operator, 20, 26
Null state, 20

O
O(−2) model, 73
O(n) model, 65, 145, 152, 156
Operator content, 25

surface, 45
Operator product algebra, 23
Operator product expansion, 12, 28, 31, 32
Ordinary transition, 38, 160
Oriented loop, 73

P
Partition function, 1, 24, 66, 73, 74, 101, 104,

119, 142, 175–177, 180
coarser, 104
finer, 104
surface, 44

Partition of a set, 104
Partitions of integers, 21
Path, 54
Pentagonal formula, 26
Percolating cluster, 115
Percolation, 27, 59–61, 63, 65, 115, 158, 177

crossing, 177
Pivotal, 60
Pivotal edge, 158
Pivotal hexagon, 62
Poincaré-Birkhoff-Witt theorem, 97
Point-splitting, 30
Poisson resummation, 26
Potts model, 21, 25, 114, 117, 118, 124, 128,

141, 142, 148, 152, 156
random bond, 131, 132

Primary, 6
Kac-Moody, 32

Primary operator, 11, 16
Probability space, 60
Profile, 43
Projective Ward identity, 5



188 Index

Q
Quantum algebra, 173
Quantum dimension, 173
Quantum hamiltonian, 13, 17
Quasi-primary, 5

R
Radial ordering, 17, 28
Random walk, 53, 62

loop-erased, 66
Random-bond Potts model, 131
Random-field Ising model, 136
Rational CFT, 27
Real loop ensemble, 147
Recurrence, 69, 92
Red bonds, 158
Reduced state, 169
Regularity criterion, 85
Relevant, 3
Renormalisation group, 105
Renormalisation-group eigenvalue, 2
Reversibility, 92
Riemann’s theorem, 77
Rocha-Caridi formula, 22, 27
Rough phase, 152
Russo’s formula, 60

S
Scale-invariance, 2
Scaling, 2
Scaling dimension, 2, 4

surface, 39
Scaling field, 2
Scaling operator, 2

irrelevant, 3
marginal, 3, 33
primary, 6
quasi-primary, 5
relevant, 3
secondary, 16

Schramm-Loewner Evolution, 51, 113
Schramm’s formula, 128, 129, 132
Schwarz-Christoffel transformation, 43, 123
Schwarzian derivative, 13
Screening charge, 156
Screening current, 37
Seam, 151
Seam edge, 151
Secondary state, 16
Segment of curve

final, 89
initial, 89

Self-duality, 131
Shadow, 68

σ -algebra, 104
Simple walk, 54
Six-vertex model, 148, 149
SLE, 51, 104, 113

chordal, 102
duality, 93
reversibility, 92
test, 125, 127–129, 132–134, 136, 138

SLE traces, 113
SLE-CFT correspondence, 96, 98, 99, 104, 123
SLEκ , 91
Solid-on-solid model, 150
SOS model, 133, 150

random, 133
Spanning cluster, 115
Special transition, 160
Spin, 4, 142
Spin glass, 133
Stochastic Loewner evolution, 51, 53, 87, 91

curves, 91
String, 169
Strip geometry, 6, 13, 17, 42
Sub-lattice

even, 149
odd, 149

Sugawara construction, 30, 34, 37
Surface critical phenomena, 38

T
Teflon effect, 167
Temperley-Lieb algebra, 145, 167, 168

one-boundary extension, 173, 174
two-boundary extension, 180

Three-point function, 5
Threshold function, 56
Tie-breaking algorithm, 116
Tiling, 54
Torus, 24
Total mass, 79
Trace, 85
Transfer matrix, 168, 173
Twisted vertex model, 150
Two-point function, 2, 5, 6, 17, 66

surface, 41

U
Uniformisation, 124
Unitarity, 18, 20
Unitary minimal model, 20, 26
Universal, 2, 7
Universality class, 2

V
Verma module, 23, 97
Vertex, 54, 72, 149
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Vertex model, 148
twisted, 150

Vertex operator, 32, 154
Virasoro algebra, 15, 20, 97

generic character, 21, 22, 176

W
Walk, 72
Ward identity

conformal, 8, 10, 11, 161
projective, 5, 41

surface, 42, 161
Watermelon exponent, 157
Weight, 69

cycle, 72
walk, 72

X
XY model, 34, 36

Y
Yang-Lee singularity, 27
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